1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
//! This crate implements various functions that help speed up dynamic //! programming, most importantly the SMAWK algorithm for finding row //! or column minima in a totally monotone matrix with *m* rows and //! *n* columns in time O(*m* + *n*). This is much better than the //! brute force solution which would take O(*mn*). When *m* and *n* //! are of the same order, this turns a quadratic function into a //! linear function. //! //! # Examples //! //! Computing the column minima of an *m* ✕ *n* Monge matrix can be //! done efficiently with `smawk_column_minima`: //! //! ``` //! use smawk::{Matrix, smawk_column_minima}; //! //! let matrix = vec![ //! vec![3, 2, 4, 5, 6], //! vec![2, 1, 3, 3, 4], //! vec![2, 1, 3, 3, 4], //! vec![3, 2, 4, 3, 4], //! vec![4, 3, 2, 1, 1], //! ]; //! let minima = vec![1, 1, 4, 4, 4]; //! assert_eq!(smawk_column_minima(&matrix), minima); //! ``` //! //! The `minima` vector gives the index of the minimum value per //! column, so `minima[0] == 1` since the minimum value in the first //! column is 2 (row 1). Note that the smallest row index is returned. //! //! # Definitions //! //! Some of the functions in this crate only work on matrices that are //! *totally monotone*, which we will define below. //! //! ## Monotone Matrices //! //! We start with a helper definition. Given an *m* ✕ *n* matrix `M`, //! we say that `M` is *monotone* when the minimum value of row `i` is //! found to the left of the minimum value in row `i'` where `i < i'`. //! //! More formally, if we let `rm(i)` denote the column index of the //! left-most minimum value in row `i`, then we have //! //! ```text //! rm(0) ≤ rm(1) ≤ ... ≤ rm(m - 1) //! ``` //! //! This means that as you go down the rows from top to bottom, the //! row-minima proceed from left to right. //! //! The algorithms in this crate deal with finding such row- and //! column-minima. //! //! ## Totally Monotone Matrices //! //! We say that a matrix `M` is *totally monotone* when every //! sub-matrix is monotone. A sub-matrix is formed by the intersection //! of any two rows `i < i'` and any two columns `j < j'`. //! //! This is often expressed as via this equivalent condition: //! //! ```text //! M[i, j] > M[i, j'] => M[i', j] > M[i', j'] //! ``` //! //! for all `i < i'` and `j < j'`. //! //! ## Monge Property for Matrices //! //! A matrix `M` is said to fulfill the *Monge property* if //! //! ```text //! M[i, j] + M[i', j'] ≤ M[i, j'] + M[i', j] //! ``` //! //! for all `i < i'` and `j < j'`. This says that given any rectangle //! in the matrix, the sum of the top-left and bottom-right corners is //! less than or equal to the sum of the bottom-left and upper-right //! corners. //! //! All Monge matrices are totally monotone, so it is enough to //! establish that the Monge property holds in order to use a matrix //! with the functions in this crate. If your program is dealing with //! unknown inputs, it can use [`monge::is_monge`] to verify that a //! matrix is a Monge matrix. #![doc(html_root_url = "https://docs.rs/smawk/0.3.1")] #[cfg(feature = "ndarray")] pub mod brute_force; pub mod monge; #[cfg(feature = "ndarray")] pub mod recursive; /// Minimal matrix trait for two-dimensional arrays. /// /// This provides the functionality needed to represent a read-only /// numeric matrix. You can query the size of the matrix and access /// elements. Modeled after [`ndarray::Array2`] from the [ndarray /// crate](https://crates.io/crates/ndarray). /// /// Enable the `ndarray` Cargo feature if you want to use it with /// `ndarray::Array2`. pub trait Matrix<T: Copy> { /// Return the number of rows. fn nrows(&self) -> usize; /// Return the number of columns. fn ncols(&self) -> usize; /// Return a matrix element. fn index(&self, row: usize, column: usize) -> T; } /// Simple and inefficient matrix representation used for doctest /// examples and simple unit tests. /// /// You should prefer implementing it yourself, or you can enable the /// `ndarray` Cargo feature and use the provided implementation for /// [`ndarray::Array2`]. impl<T: Copy> Matrix<T> for Vec<Vec<T>> { fn nrows(&self) -> usize { self.len() } fn ncols(&self) -> usize { self[0].len() } fn index(&self, row: usize, column: usize) -> T { self[row][column] } } /// Adapting [`ndarray::Array2`] to the `Matrix` trait. /// /// **Note: this implementation is only available if you enable the /// `ndarray` Cargo feature.** #[cfg(feature = "ndarray")] impl<T: Copy> Matrix<T> for ndarray::Array2<T> { #[inline] fn nrows(&self) -> usize { self.nrows() } #[inline] fn ncols(&self) -> usize { self.ncols() } #[inline] fn index(&self, row: usize, column: usize) -> T { self[[row, column]] } } /// Compute row minima in O(*m* + *n*) time. /// /// This implements the SMAWK algorithm for finding row minima in a /// totally monotone matrix. /// /// The SMAWK algorithm is from Agarwal, Klawe, Moran, Shor, and /// Wilbur, *Geometric applications of a matrix searching algorithm*, /// Algorithmica 2, pp. 195-208 (1987) and the code here is a /// translation [David Eppstein's Python code][pads]. /// /// [pads]: https://github.com/jfinkels/PADS/blob/master/pads/smawk.py /// /// Running time on an *m* ✕ *n* matrix: O(*m* + *n*). /// /// # Panics /// /// It is an error to call this on a matrix with zero columns. pub fn smawk_row_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> { // Benchmarking shows that SMAWK performs roughly the same on row- // and column-major matrices. let mut minima = vec![0; matrix.nrows()]; smawk_inner( &|j, i| matrix.index(i, j), &(0..matrix.ncols()).collect::<Vec<_>>(), &(0..matrix.nrows()).collect::<Vec<_>>(), &mut minima, ); minima } /// Compute column minima in O(*m* + *n*) time. /// /// This implements the SMAWK algorithm for finding column minima in a /// totally monotone matrix. /// /// The SMAWK algorithm is from Agarwal, Klawe, Moran, Shor, and /// Wilbur, *Geometric applications of a matrix searching algorithm*, /// Algorithmica 2, pp. 195-208 (1987) and the code here is a /// translation [David Eppstein's Python code][pads]. /// /// [pads]: https://github.com/jfinkels/PADS/blob/master/pads/smawk.py /// /// Running time on an *m* ✕ *n* matrix: O(*m* + *n*). /// /// # Panics /// /// It is an error to call this on a matrix with zero rows. pub fn smawk_column_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> { let mut minima = vec![0; matrix.ncols()]; smawk_inner( &|i, j| matrix.index(i, j), &(0..matrix.nrows()).collect::<Vec<_>>(), &(0..matrix.ncols()).collect::<Vec<_>>(), &mut minima, ); minima } /// Compute column minima in the given area of the matrix. The /// `minima` slice is updated inplace. fn smawk_inner<T: PartialOrd + Copy, M: Fn(usize, usize) -> T>( matrix: &M, rows: &[usize], cols: &[usize], mut minima: &mut [usize], ) { if cols.is_empty() { return; } let mut stack = Vec::with_capacity(cols.len()); for r in rows { // TODO: use stack.last() instead of stack.is_empty() etc while !stack.is_empty() && matrix(stack[stack.len() - 1], cols[stack.len() - 1]) > matrix(*r, cols[stack.len() - 1]) { stack.pop(); } if stack.len() != cols.len() { stack.push(*r); } } let rows = &stack; let mut odd_cols = Vec::with_capacity(1 + cols.len() / 2); for (idx, c) in cols.iter().enumerate() { if idx % 2 == 1 { odd_cols.push(*c); } } smawk_inner(matrix, rows, &odd_cols, &mut minima); let mut r = 0; for (c, &col) in cols.iter().enumerate().filter(|(c, _)| c % 2 == 0) { let mut row = rows[r]; let last_row = if c == cols.len() - 1 { rows[rows.len() - 1] } else { minima[cols[c + 1]] }; let mut pair = (matrix(row, col), row); while row != last_row { r += 1; row = rows[r]; if (matrix(row, col), row) < pair { pair = (matrix(row, col), row); } } minima[col] = pair.1; } } /// Compute upper-right column minima in O(*m* + *n*) time. /// /// The input matrix must be totally monotone. /// /// The function returns a vector of `(usize, T)`. The `usize` in the /// tuple at index `j` tells you the row of the minimum value in /// column `j` and the `T` value is minimum value itself. /// /// The algorithm only considers values above the main diagonal, which /// means that it computes values `v(j)` where: /// /// ```text /// v(0) = initial /// v(j) = min { M[i, j] | i < j } for j > 0 /// ``` /// /// If we let `r(j)` denote the row index of the minimum value in /// column `j`, the tuples in the result vector become `(r(j), M[r(j), /// j])`. /// /// The algorithm is an *online* algorithm, in the sense that `matrix` /// function can refer back to previously computed column minima when /// determining an entry in the matrix. The guarantee is that we only /// call `matrix(i, j)` after having computed `v(i)`. This is /// reflected in the `&[(usize, T)]` argument to `matrix`, which grows /// as more and more values are computed. pub fn online_column_minima<T: Copy + PartialOrd, M: Fn(&[(usize, T)], usize, usize) -> T>( initial: T, size: usize, matrix: M, ) -> Vec<(usize, T)> { let mut result = vec![(0, initial)]; // State used by the algorithm. let mut finished = 0; let mut base = 0; let mut tentative = 0; // Shorthand for evaluating the matrix. We need a macro here since // we don't want to borrow the result vector. macro_rules! m { ($i:expr, $j:expr) => {{ assert!($i < $j, "(i, j) not above diagonal: ({}, {})", $i, $j); assert!( $i < size && $j < size, "(i, j) out of bounds: ({}, {}), size: {}", $i, $j, size ); matrix(&result[..finished + 1], $i, $j) }}; } // Keep going until we have finished all size columns. Since the // columns are zero-indexed, we're done when finished == size - 1. while finished < size - 1 { // First case: we have already advanced past the previous // tentative value. We make a new tentative value by applying // smawk_inner to the largest square submatrix that fits under // the base. let i = finished + 1; if i > tentative { let rows = (base..finished + 1).collect::<Vec<_>>(); tentative = std::cmp::min(finished + rows.len(), size - 1); let cols = (finished + 1..tentative + 1).collect::<Vec<_>>(); let mut minima = vec![0; tentative + 1]; smawk_inner(&|i, j| m![i, j], &rows, &cols, &mut minima); for col in cols { let row = minima[col]; let v = m![row, col]; if col >= result.len() { result.push((row, v)); } else if v < result[col].1 { result[col] = (row, v); } } finished = i; continue; } // Second case: the new column minimum is on the diagonal. All // subsequent ones will be at least as low, so we can clear // out all our work from higher rows. As in the fourth case, // the loss of tentative is amortized against the increase in // base. let diag = m![i - 1, i]; if diag < result[i].1 { result[i] = (i - 1, diag); base = i - 1; tentative = i; finished = i; continue; } // Third case: row i-1 does not supply a column minimum in any // column up to tentative. We simply advance finished while // maintaining the invariant. if m![i - 1, tentative] >= result[tentative].1 { finished = i; continue; } // Fourth and final case: a new column minimum at tentative. // This allows us to make progress by incorporating rows prior // to finished into the base. The base invariant holds because // these rows cannot supply any later column minima. The work // done when we last advanced tentative (and undone by this // step) can be amortized against the increase in base. base = i - 1; tentative = i; finished = i; } result } #[cfg(test)] mod tests { use super::*; #[test] fn smawk_1x1() { let matrix = vec![vec![2]]; assert_eq!(smawk_row_minima(&matrix), vec![0]); assert_eq!(smawk_column_minima(&matrix), vec![0]); } #[test] fn smawk_2x1() { let matrix = vec![ vec![3], // vec![2], ]; assert_eq!(smawk_row_minima(&matrix), vec![0, 0]); assert_eq!(smawk_column_minima(&matrix), vec![1]); } #[test] fn smawk_1x2() { let matrix = vec![vec![2, 1]]; assert_eq!(smawk_row_minima(&matrix), vec![1]); assert_eq!(smawk_column_minima(&matrix), vec![0, 0]); } #[test] fn smawk_2x2() { let matrix = vec![ vec![3, 2], // vec![2, 1], ]; assert_eq!(smawk_row_minima(&matrix), vec![1, 1]); assert_eq!(smawk_column_minima(&matrix), vec![1, 1]); } #[test] fn smawk_3x3() { let matrix = vec![ vec![3, 4, 4], // vec![3, 4, 4], vec![2, 3, 3], ]; assert_eq!(smawk_row_minima(&matrix), vec![0, 0, 0]); assert_eq!(smawk_column_minima(&matrix), vec![2, 2, 2]); } #[test] fn smawk_4x4() { let matrix = vec![ vec![4, 5, 5, 5], // vec![2, 3, 3, 3], vec![2, 3, 3, 3], vec![2, 2, 2, 2], ]; assert_eq!(smawk_row_minima(&matrix), vec![0, 0, 0, 0]); assert_eq!(smawk_column_minima(&matrix), vec![1, 3, 3, 3]); } #[test] fn smawk_5x5() { let matrix = vec![ vec![3, 2, 4, 5, 6], vec![2, 1, 3, 3, 4], vec![2, 1, 3, 3, 4], vec![3, 2, 4, 3, 4], vec![4, 3, 2, 1, 1], ]; assert_eq!(smawk_row_minima(&matrix), vec![1, 1, 1, 1, 3]); assert_eq!(smawk_column_minima(&matrix), vec![1, 1, 4, 4, 4]); } #[test] fn online_1x1() { let matrix = vec![vec![0]]; let minima = vec![(0, 0)]; assert_eq!(online_column_minima(0, 1, |_, i, j| matrix[i][j]), minima); } #[test] fn online_2x2() { let matrix = vec![ vec![0, 2], // vec![0, 0], ]; let minima = vec![(0, 0), (0, 2)]; assert_eq!(online_column_minima(0, 2, |_, i, j| matrix[i][j]), minima); } #[test] fn online_3x3() { let matrix = vec![ vec![0, 4, 4], // vec![0, 0, 4], vec![0, 0, 0], ]; let minima = vec![(0, 0), (0, 4), (0, 4)]; assert_eq!(online_column_minima(0, 3, |_, i, j| matrix[i][j]), minima); } #[test] fn online_4x4() { let matrix = vec![ vec![0, 5, 5, 5], // vec![0, 0, 3, 3], vec![0, 0, 0, 3], vec![0, 0, 0, 0], ]; let minima = vec![(0, 0), (0, 5), (1, 3), (1, 3)]; assert_eq!(online_column_minima(0, 4, |_, i, j| matrix[i][j]), minima); } #[test] fn online_5x5() { let matrix = vec![ vec![0, 2, 4, 6, 7], vec![0, 0, 3, 4, 5], vec![0, 0, 0, 3, 4], vec![0, 0, 0, 0, 4], vec![0, 0, 0, 0, 0], ]; let minima = vec![(0, 0), (0, 2), (1, 3), (2, 3), (2, 4)]; assert_eq!(online_column_minima(0, 5, |_, i, j| matrix[i][j]), minima); } #[test] fn smawk_works_with_partial_ord() { let matrix = vec![ vec![3.0, 2.0], // vec![2.0, 1.0], ]; assert_eq!(smawk_row_minima(&matrix), vec![1, 1]); assert_eq!(smawk_column_minima(&matrix), vec![1, 1]); } #[test] fn online_works_with_partial_ord() { let matrix = vec![ vec![0.0, 2.0], // vec![0.0, 0.0], ]; let minima = vec![(0, 0.0), (0, 2.0)]; assert_eq!(online_column_minima(0.0, 2, |_, i:usize, j:usize| matrix[i][j]), minima); } }