use crate::helpers::IntHelper;
trait DivHalf: Copy {
fn hi(self) -> Self;
fn lo(self) -> Self;
fn up_lo(self, lo: Self) -> Self;
fn div_half(&mut self, d: Self, next_half: Self) -> Self;
fn normalize(&mut self, n1: &mut Self, n0: &mut Self) -> (Self, u32);
fn unnormalize(self, zeros: u32) -> Self;
}
macro_rules! div_half {
($($T:ty: $n:expr),*) => { $(
impl DivHalf for $T {
#[inline]
fn hi(self) -> $T {
self >> ($n / 2)
}
#[inline]
fn lo(self) -> $T {
self & !(!0 << ($n / 2))
}
#[inline]
fn up_lo(self, lo: $T) -> $T {
self << ($n / 2) | lo
}
#[inline]
fn div_half(&mut self, d: $T, next_half: $T) -> $T {
let dh = d.hi();
let (mut q, rr) = (*self / dh, *self % dh);
let m = q * d.lo();
*self = rr.up_lo(next_half);
if *self < m {
q -= 1;
*self = match self.overflowing_add(d) {
(r, false) if r < m => {
q -= 1;
r.wrapping_add(d)
}
(r, _) => r,
};
}
*self = self.wrapping_sub(m);
q
}
#[inline]
fn normalize(&mut self, n1: &mut $T, n0: &mut $T) -> ($T, u32) {
assert!(*self != 0, "division by zero");
let zeros = self.leading_zeros();
if zeros == 0 {
(0, 0)
} else {
*self <<= zeros;
let n2 = *n1 >> ($n - zeros);
*n1 = *n1 << zeros | *n0 >> ($n - zeros);
*n0 <<= zeros;
(n2, zeros)
}
}
#[inline]
fn unnormalize(self, zeros: u32) -> Self {
self >> zeros
}
}
)* };
}
div_half! { u8: 8, u16: 16, u32: 32, u64: 64, u128: 128 }
trait NegAbsHiLo {
type Abs;
fn neg_abs(self) -> (bool, Self::Abs);
fn from_neg_abs(neg: bool, abs: Self::Abs) -> Self;
}
macro_rules! neg_abs_hi_lo {
($($S:ty: $U:ty),*) => { $(
impl NegAbsHiLo for ($S, $U) {
type Abs = ($U, $U);
#[inline]
fn neg_abs(self) -> (bool, ($U, $U)) {
if self.0 < 0 {
match self.1.overflowing_neg() {
(n, true) => (true, (!self.0 as $U, n)),
(n, false) => (true, (self.0.wrapping_neg() as $U, n)),
}
} else {
(false, (self.0 as $U, self.1))
}
}
#[inline]
fn from_neg_abs(neg: bool, abs: ($U, $U)) -> ($S, $U) {
if neg {
match abs.1.overflowing_neg() {
(n, true) => (!abs.0 as $S, n),
(n, false) => (abs.0.wrapping_neg() as $S, n),
}
} else {
(abs.0 as $S, abs.1)
}
}
}
)* };
}
neg_abs_hi_lo! { i8: u8, i16: u16, i32: u32, i64: u64, i128: u128 }
pub trait WideDivRem<U>: Sized {
fn div_rem_from(self, dividend: (Self, U)) -> ((Self, U), Self);
}
macro_rules! unsigned_wide_div_rem {
($($U:ty),*) => { $(
impl WideDivRem<$U> for $U {
#[inline]
fn div_rem_from(self, dividend: ($U, $U)) -> (($U, $U), $U) {
let (mut n1, mut n0, mut d) = (dividend.0, dividend.1, self);
let (mut r, zeros) = d.normalize(&mut n1, &mut n0);
let q1h = r.div_half(d, n1.hi());
let q1l = r.div_half(d, n1.lo());
let q0h = r.div_half(d, n0.hi());
let q0l = r.div_half(d, n0.lo());
((q1h.up_lo(q1l), q0h.up_lo(q0l)), r.unnormalize(zeros))
}
}
)* };
}
macro_rules! signed_wide_div_rem {
($($S:ty: $U:ty),*) => { $(
impl WideDivRem<$U> for $S {
#[inline]
fn div_rem_from(self, dividend: ($S, $U)) -> (($S, $U), $S) {
let (n_neg, n_abs) = dividend.neg_abs();
let (d_neg, d_abs) = self.neg_abs();
let (q, r) = d_abs.div_rem_from(n_abs);
(
NegAbsHiLo::from_neg_abs(n_neg != d_neg, q),
IntHelper::from_neg_abs(n_neg, r),
)
}
}
)* };
}
unsigned_wide_div_rem! { u8, u16, u32, u64, u128 }
signed_wide_div_rem! { i8: u8, i16: u16, i32: u32, i64: u64, i128: u128 }
#[cfg(test)]
mod tests {
use super::WideDivRem;
fn check_8((n1, n0): (u8, u8), d: u8) -> ((u8, u8), u8) {
let n = u16::from(n1) << 8 | u16::from(n0);
let d = u16::from(d);
let (q, r) = (n / d, n % d);
(((q >> 8) as u8, q as u8), r as u8)
}
fn check_16((n1, n0): (u16, u16), d: u16) -> ((u16, u16), u16) {
let n = u32::from(n1) << 16 | u32::from(n0);
let d = u32::from(d);
let (q, r) = (n / d, n % d);
(((q >> 16) as u16, q as u16), r as u16)
}
fn check_64((n1, n0): (u64, u64), d: u64) -> ((u64, u64), u64) {
let n = u128::from(n1) << 64 | u128::from(n0);
let d = u128::from(d);
let (q, r) = (n / d, n % d);
(((q >> 64) as u64, q as u64), r as u64)
}
fn icheck_8((n1, n0): (i8, u8), d: i8) -> ((i8, u8), i8) {
let n = i16::from(n1) << 8 | i16::from(n0);
let d = i16::from(d);
let (q, r) = (n / d, n % d);
(((q >> 8) as i8, q as u8), r as i8)
}
fn icheck_16((n1, n0): (i16, u16), d: i16) -> ((i16, u16), i16) {
let n = i32::from(n1) << 16 | i32::from(n0);
let d = i32::from(d);
let (q, r) = (n / d, n % d);
(((q >> 16) as i16, q as u16), r as i16)
}
fn icheck_64((n1, n0): (i64, u64), d: i64) -> ((i64, u64), i64) {
let n = i128::from(n1) << 64 | i128::from(n0);
let d = i128::from(d);
let (q, r) = (n / d, n % d);
(((q >> 64) as i64, q as u64), r as i64)
}
#[test]
fn test_wide_div_rem() {
for d in 1..=255 {
for n1 in (0..=255).step_by(15) {
for n0 in (0..=255).step_by(15) {
let qr = d.div_rem_from((n1, n0));
let check = check_8((n1, n0), d);
assert_eq!(qr, check);
let d = u16::from(d) << 8 | 1;
let n1 = u16::from(n1) << 8 | 1;
let n0 = u16::from(n0) << 8 | 1;
let qr = d.div_rem_from((n1, n0));
let check = check_16((n1, n0), d);
assert_eq!(qr, check);
let d = u64::from(d) << 48 | 1;
let n1 = u64::from(n1) << 48 | 1;
let n0 = u64::from(n0) << 48 | 1;
let qr = d.div_rem_from((n1, n0));
let check = check_64((n1, n0), d);
assert_eq!(qr, check);
}
}
}
}
#[test]
fn test_wide_idiv_rem() {
for d in -128..=127 {
if d == 0 {
continue;
}
for n1 in (-120..=120).step_by(15) {
for n0 in (0..=255).step_by(15) {
let qr = d.div_rem_from((n1, n0));
let check = icheck_8((n1, n0), d);
assert_eq!(qr, check);
let d = i16::from(d) << 8 | 1;
let n1 = i16::from(n1) << 8 | 1;
let n0 = u16::from(n0) << 8 | 1;
let qr = d.div_rem_from((n1, n0));
let check = icheck_16((n1, n0), d);
assert_eq!(qr, check);
let d = i64::from(d) << 48 | 1;
let n1 = i64::from(n1) << 48 | 1;
let n0 = u64::from(n0) << 48 | 1;
let qr = d.div_rem_from((n1, n0));
let check = icheck_64((n1, n0), d);
assert_eq!(qr, check);
}
}
}
}
}