1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
pub mod disassembly;

use pest::iterators::{Pair, Pairs};
use pest::Parser;

use crate::test_binary::{RelayAction, RelayInstr, Segment, SensorAction, SensorInstr, Test};
use crate::{result::CompilerResult, test_binary::DeviceAddress};

// The following derive macro links the "assembly.pest" file to the Parser
#[derive(Parser)]
#[grammar = "./test_assembly/assembly.pest"]
struct TAFParser;

/// Parses a test assembly program into a Test if possible
pub fn parse(text: String) -> CompilerResult<Test> {
    let mut res = CompilerResult::new("Assembly Parsing");

    // Parse the input text using the Pest parser
    match TAFParser::parse(Rule::TEST, &text) {
        // Parse the resulting tree
        Ok(parse_tree) => {
            res.set(test_from_tree(parse_tree.peek().unwrap()));
        }
        // Record the parse error
        Err(pest_error) => {
            res.error(Box::new(pest_error));
        }
    }

    res
}

/// Create a Test struct from a parse tree node of type Rule::TEST
fn test_from_tree(node: Pair<Rule>) -> CompilerResult<Test> {
    let mut res = CompilerResult::unnamed();
    let mut test = Test::new();
    // The index of the current abort
    let mut current_abort: usize = 0;

    for node in node.into_inner() {
        match node.as_rule() {
            // Generate an abort from the ABORT rule
            Rule::ABORT => {
                // Try to interpret the inside of the ABORT as segments
                let mut iterator = node.into_inner();
                let abort_header = iterator.next().unwrap();
                let abort_idx_rule = abort_header.into_inner().next().unwrap();
                let abort_idx_num = abort_idx_rule.as_str().parse::<u16>().unwrap();
                if abort_idx_num != current_abort as u16 + 1 {
                    res.error(format!(
                        "The provided index of the {}th abort was {} instead!",
                        current_abort + 1,
                        abort_idx_num
                    ));
                }
                if let Some(mut segments) = res.require(segments_from_tree(iterator)) {
                    // If this would be abort 15 or less, then add the segments to the abort
                    if current_abort < 15 {
                        test.aborts[current_abort].segments.append(&mut segments);
                    }
                }
                // Increment the id of the current_abort
                current_abort += 1;
            }
            // Parse the segments for the test body
            Rule::TEST_BODY => {
                // Try to interpret the inside of the TEST_BODY as segments
                let mut iterator = node.into_inner();
                // ignore the header
                let _header = iterator.next();
                if let Some(mut segments) = res.require(segments_from_tree(iterator)) {
                    // Add the segments to the body
                    test.body.segments.append(&mut segments);
                }
            }
            // Do nothing for the End-Of-Input rule
            Rule::EOI => {}
            // No other
            _ => unreachable!(),
        }
    }

    // If too many Aborts were found, then fail the parse
    if current_abort >= 15 {
        res.error(format!("Found {} Aborts, Limit is 15", current_abort))
    }

    res.with_value(test)
}

/// Create a sequence of Segments from a parse tree node of type Rule::TEST_BODY or Rule::ABORT
fn segments_from_tree(iterator: Pairs<Rule>) -> CompilerResult<Vec<Segment>> {
    let mut res = CompilerResult::unnamed();
    // let mut iterator = node.into_inner();
    // Ignore the header
    // let _header = iterator.next();

    res.set_value(Vec::new());
    res.collect(iterator.map(segment_from_tree));
    res
}

/// Create a segment from a parse tree of type Rule::RELAY_STATEMENT or type Rule::SENSOR_STATEMENT
fn segment_from_tree(node: Pair<Rule>) -> CompilerResult<Segment> {
    let mut res = CompilerResult::unnamed();
    // let span = node.as_span();
    let mut iterator = node.into_inner();

    #[derive(PartialEq, Eq)]
    enum State {
        Sensors,
        Relays,
    }
    // The current state of segment parsing
    // Statements within a Segment go in the order Sensors then Relays
    let mut state = State::Sensors;

    let rel_time = if let Some(segment_header) = iterator.next() {
        if let Some(relative_time) = segment_header.into_inner().next() {
            res.require(relative_time.as_str().parse::<u32>())
        } else {
            res.error("Relative Time Not Found");
            None
        }
    } else {
        res.error("Segment Header Not Found");
        None
    };

    let rel_time = if let Some(rel_time) = rel_time {
        rel_time
    } else {
        1
    };
    let mut segment = check!(res, Segment::try_new(rel_time));

    for child in iterator {
        match child.as_rule() {
            Rule::SENSOR_STATEMENT => {
                // If we have already parsed a Relay, fail
                if state == State::Relays {
                    res.error("Sensor statement found mixed in with or after Relays");
                }
                // If we can parse a sensor, add it to the sensors list
                if let Some(sensor_stmt) = res.require(sensor_statement_from_tree(child)) {
                    segment.sensor_instructions.push(sensor_stmt)
                }
            }
            Rule::RELAY_STATEMENT => {
                // Mark the state as parsing relays
                state = State::Relays;

                // If we can parse a relay, add it to the relays list
                if let Some(relay_stmt) = res.require(relay_statement_from_tree(child)) {
                    segment.relay_instructions.push(relay_stmt)
                }
            }
            _ => unreachable!(),
        }
    }

    res.with_value(segment)
}

/// Create a device address from a parse tree node of type Rule::ADDRESS
fn device_address_from_tree(node: Pair<Rule>) -> CompilerResult<DeviceAddress> {
    let mut res = CompilerResult::new("Parsing device address");

    let mut iterator = node.into_inner();

    let prefix = iterator.next().unwrap().as_str();
    let address = check!(
        res,
        iterator.next().unwrap().as_str().parse::<u16>(),
        "Invalid device address"
    );

    let virtuality = match prefix {
        "P" => 0,
        "V" => 1,
        _ => {
            res.error("Invalid prefix for device address");
            return res;
        }
    };

    res.with_value(DeviceAddress {
        value: address,
        virtuality,
    })
}

/// Create a Relay Statement from a parse tree node of type Rule::RELAY_STATEMENT
fn relay_statement_from_tree(node: Pair<Rule>) -> CompilerResult<RelayInstr> {
    let mut res = CompilerResult::new("Parsing Relay Statement");

    let mut iterator = node.into_inner();
    let op = iterator.next().unwrap();

    let address = check!(res, device_address_from_tree(iterator.next().unwrap()));

    let action = check!(res, RelayAction::parse(&op.as_str().to_lowercase()));

    let relay_instr = check!(res, RelayInstr::try_new(action, address));
    res.with_value(relay_instr)
}

/// Create a Sensor Statement from a parse tree node of type Rule::SENSOR_STATEMENT
fn sensor_statement_from_tree(node: Pair<Rule>) -> CompilerResult<SensorInstr> {
    let inner = node.into_inner().next().unwrap();

    match inner.as_rule() {
        Rule::SENSOR_CHECK_STATEMENT => sensor_check_from_tree(inner),
        Rule::SENSOR_STOP_STATEMENT => sensor_stop_from_tree(inner),
        _ => unreachable!(),
    }
}

/// Create a Sensor Check from a parse tree node of type SENSOR_CHECK_STATEMENT
fn sensor_check_from_tree(node: Pair<Rule>) -> CompilerResult<SensorInstr> {
    let mut res = CompilerResult::new("Parsing Sensor Check Instruction");
    // let span = node.as_span();
    let mut iterator = node.into_inner();

    // Retrieve the various nodes
    let sensor_check = iterator.next().unwrap();
    let address = check!(res, device_address_from_tree(iterator.next().unwrap()));
    let left_bound = iterator.next().unwrap();
    let right_bound = iterator.next().unwrap();
    let abort_idx = iterator.next().unwrap();

    // Parse the various sub-trees
    let action = check!(
        res,
        SensorAction::parse(&sensor_check.as_str().to_lowercase())
    );
    let left_bound = check!(res, parse_hex(left_bound));
    let right_bound = check!(res, parse_hex(right_bound));
    let abort_idx = check!(res, abort_idx.as_str().parse::<u8>());
    //Create a new sensor instruction from the parsed values
    let sensor_instr = check!(
        res,
        SensorInstr::try_new(action, abort_idx, address, left_bound, right_bound,)
    );
    res.with_value(sensor_instr)
}

/// Create a Sensor Stop from a parse tree node of type SENSOR_STOP_STATEMENT
fn sensor_stop_from_tree(node: Pair<Rule>) -> CompilerResult<SensorInstr> {
    let mut res = CompilerResult::new("Parsing Sensor Stop Instruction");
    // let span = node.as_span();
    let mut iterator = node.into_inner();

    let address = check!(res, device_address_from_tree(iterator.next().unwrap()));
    let sensor_instr = check!(res, SensorInstr::try_new_stop(address));
    res.with_value(sensor_instr)
}

fn parse_hex(node: Pair<Rule>) -> CompilerResult<u16> {
    let mut res = CompilerResult::new("Parsing Hexadecimal Number Literal");
    // let span = node.as_span();
    res.set_res(u16::from_str_radix(
        node.as_str().trim_start_matches("0x"),
        16,
    ));
    res
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::result::Status;

    #[test]
    fn test_valid_hex_parse() {
        let valid_hex = "0xAA";

        let parsed_hex = TAFParser::parse(Rule::HEX_NUM, valid_hex);
        let hex_val = parse_hex(parsed_hex.unwrap().peek().unwrap());
        assert_eq!(Some(170), hex_val.to_option());
    }

    #[test]
    fn test_invalid_hex_parse() {
        let valid_hex = "0xZAZA";
        assert_eq!(true, TAFParser::parse(Rule::HEX_NUM, valid_hex).is_err());
    }

    #[test]
    fn test_abort_header_parse() {
        for i in 1..16 {
            let abort_header_1 = format!("abort #{}:\n", i);
            assert_eq!(
                true,
                TAFParser::parse(Rule::ABORT_HEADER, abort_header_1.as_str()).is_ok()
            )
        }
    }

    #[test]
    fn test_abort_header_idx_check() {
        let test_valid = r#"abort #1:
        segment +1ms

        abort #2:
        segment +1ms
        
        abort #3:
        segment +1ms
        
        test:
        segment +1ms
        "#;
        let test_invalid = r#"abort #1:
        segment +1ms

        abort #3:
        segment +1ms
        
        abort #2:
        segment +1ms
        
        test:
        segment +1ms
        "#;
        assert_eq!(Status::Passed, parse(test_valid.to_string()).get_status());
        assert_eq!(Status::Failed, parse(test_invalid.to_string()).get_status());
    }

    #[test]
    fn test_sensor_check_instant() {
        let sensor_check = "is_now_in P1, 0x00, 0xFF, #1\n";
        let expected = SensorInstr::try_new(
            SensorAction::is_now_in,
            1,
            DeviceAddress {
                value: 1,
                virtuality: 0,
            },
            0,
            255,
        )
        .to_option()
        .unwrap();
        let pairs = TAFParser::parse(Rule::SENSOR_CHECK_STATEMENT, sensor_check);
        let check_instr = sensor_check_from_tree(pairs.unwrap().peek().unwrap());
        assert_eq!(Some(expected), check_instr.to_option());
    }

    #[test]
    fn test_sensor_start_check() {
        let sensor_check_statement = "start_check_in P1, 0x00, 0xFF, #1\n";
        let sensor_check = SensorInstr::try_new(
            SensorAction::start_check_in,
            1,
            DeviceAddress {
                value: 1,
                virtuality: 0,
            },
            0,
            255,
        )
        .to_option()
        .unwrap();
        let sensor_pairs_start =
            TAFParser::parse(Rule::SENSOR_CHECK_STATEMENT, sensor_check_statement);
        let check_start_statement =
            sensor_check_from_tree(sensor_pairs_start.unwrap().peek().unwrap());
        assert_eq!(Some(sensor_check), check_start_statement.to_option());
    }

    #[test]
    fn test_sensor_stop_check() {
        let sensor_stop_statement = "stop_check P3\n";
        let sensor_stop = SensorInstr::try_new_stop(DeviceAddress {
            value: 3,
            virtuality: 0,
        })
        .to_option()
        .unwrap();
        let sensor_pairs_stop =
            TAFParser::parse(Rule::SENSOR_STOP_STATEMENT, sensor_stop_statement);
        let check_stop_statement =
            sensor_stop_from_tree(sensor_pairs_stop.unwrap().peek().unwrap());
        println!("{:?}", check_stop_statement);
        assert_eq!(Some(sensor_stop), check_stop_statement.to_option());
    }

    #[test]
    fn test_relay_set() {
        let relay_statement_set = "set P1\n";
        let relay_set = RelayInstr::try_new(
            RelayAction::Set,
            DeviceAddress {
                value: 1,
                virtuality: 0,
            },
        )
        .to_option()
        .unwrap();
        let relay_pairs_set = TAFParser::parse(Rule::RELAY_STATEMENT, relay_statement_set);
        let check_set_statement =
            relay_statement_from_tree(relay_pairs_set.unwrap().peek().unwrap());
        assert_eq!(Some(relay_set), check_set_statement.to_option());
    }

    #[test]
    fn test_relay_unset() {
        let relay_statement_unset = "unset P1\n";
        let relay_unset = RelayInstr::try_new(
            RelayAction::Unset,
            DeviceAddress {
                value: 1,
                virtuality: 0,
            },
        )
        .to_option()
        .unwrap();
        let relay_pairs_unset = TAFParser::parse(Rule::RELAY_STATEMENT, relay_statement_unset);
        let check_unset_statement =
            relay_statement_from_tree(relay_pairs_unset.unwrap().peek().unwrap());

        assert_eq!(Some(relay_unset), check_unset_statement.to_option())
    }

    #[test]
    fn white_space_in_middle() {
        let relay_statement = "set  P1           \n";
        let relay_expected = RelayInstr::try_new(
            RelayAction::Set,
            DeviceAddress {
                value: 1,
                virtuality: 0,
            },
        )
        .to_option()
        .unwrap();
        let relay_pairs = TAFParser::parse(Rule::RELAY_STATEMENT, relay_statement);
        let relay_instruction = relay_statement_from_tree(relay_pairs.unwrap().peek().unwrap());
        assert_eq!(Some(relay_expected), relay_instruction.to_option());

        let sensor_statement = "is_now_in               P1,            0x00,                  0xFF,           #1            \n";
        let sensor_expected = SensorInstr::try_new(
            SensorAction::is_now_in,
            1,
            DeviceAddress {
                value: 1,
                virtuality: 0,
            },
            0,
            255,
        )
        .to_option()
        .unwrap();
        let sensor_pairs = TAFParser::parse(Rule::SENSOR_CHECK_STATEMENT, sensor_statement);
        let sensor_instruction = sensor_check_from_tree(sensor_pairs.unwrap().peek().unwrap());
        assert_eq!(Some(sensor_expected), sensor_instruction.to_option());
    }

    #[test]
    fn extra_new_line_at_end() {
        let relay_statement = "set P1\n\n\n\n\n\n\n\n\n";
        let relay_expected = RelayInstr::try_new(
            RelayAction::Set,
            DeviceAddress {
                value: 1,
                virtuality: 0,
            },
        )
        .to_option()
        .unwrap();
        let relay_pairs = TAFParser::parse(Rule::RELAY_STATEMENT, relay_statement);
        let relay_instruction = relay_statement_from_tree(relay_pairs.unwrap().peek().unwrap());
        assert_eq!(Some(relay_expected), relay_instruction.to_option());

        let sensor_statement = "is_now_in P1, 0x00, 0xFF, #1\n\n\n\n\n\n\n\n\n";
        let sensor_expected = SensorInstr::try_new(
            SensorAction::is_now_in,
            1,
            DeviceAddress {
                value: 1,
                virtuality: 0,
            },
            0,
            255,
        )
        .to_option()
        .unwrap();
        let sensor_pairs = TAFParser::parse(Rule::SENSOR_CHECK_STATEMENT, sensor_statement);
        let sensor_instruction = sensor_check_from_tree(sensor_pairs.unwrap().peek().unwrap());
        assert_eq!(Some(sensor_expected), sensor_instruction.to_option());
    }
    #[test]
    fn new_line_in_middle() {
        let relay_statement = "set \n\n\n\n P1\n";
        assert!(TAFParser::parse(Rule::RELAY_STATEMENT, relay_statement).is_err());

        let sensor_statement = "is_now_in P1 \n\n, 0x00\n, 0xFF\n, #1\n";
        assert!(TAFParser::parse(Rule::SENSOR_CHECK_STATEMENT, sensor_statement).is_err());
    }

    #[test]
    fn new_line_in_start() {
        let relay_statement = "\n\n\n\nset P1\n";
        assert!(TAFParser::parse(Rule::RELAY_STATEMENT, relay_statement).is_err());

        let sensor_statement = "\n\n\n\nis_now_in 1, 0x00, 0xFF, P1\n";
        assert!(TAFParser::parse(Rule::SENSOR_CHECK_STATEMENT, sensor_statement).is_err());
    }
}