1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
pub mod ast;
pub mod concrete_test;
use ast::Statement;
use pest::iterators::{Pair, Pairs};
#[allow(unused)]
use pest::Parser;

use crate::result::{diagnostic::Location, CompilerResult};
use ast::{SensorBound, SensorBoundNumeric, SensorConstraint};
// The following derive macro links my "tdf.pest" file to the Parser
/// The Parser type all parsing behavior is bound to this type
#[derive(Parser)]
#[grammar = "./test_descriptor/tdf.pest"]
struct TDFParser;

/// Attempts to parse the Test Descriptor Format
/// and create an ast::Test struct
pub fn parse_tdf(file_id: usize, text: String) -> CompilerResult<ast::Test> {
    let mut res = CompilerResult::new("Parse Test Descriptor Format");

    // Parse the input text using the Pest parser
    match TDFParser::parse(Rule::TEST, &text) {
        // Parse the resulting tree
        Ok(_parse_tree) => {
            res.set(test_from_tree(file_id, _parse_tree.peek().unwrap()));
        }
        // Record the parse error
        Err(pest_error) => {
            res.error(Box::new(pest_error));
        }
    }
    res
}

/// Generates ast::Test Struct from parse tree
fn test_from_tree(file_id: usize, node: Pair<Rule>) -> CompilerResult<ast::Test> {
    let mut res = CompilerResult::new("Generating ast");

    let mut aborts = Vec::new();
    let mut test_body = Option::None;
    for node in node.into_inner() {
        match node.as_rule() {
            Rule::ABORT_SEQUENCE => {
                if let Some(abort) = res.require(abort_sequence_from_tree(file_id, node)) {
                    aborts.push(abort);
                }
            }
            Rule::TEST_BODY => {
                if let Some(test_body_temp) = res.require(test_body_from_tree(file_id, node)) {
                    test_body = Some(test_body_temp);
                }
            }
            Rule::EOI => {}
            _ => unreachable!(),
        }
    }

    //Ensure no more than 15 user-defined aborts
    if aborts.len() > 15 {
        res.error("More than 15 aborts defined in test");
    }

    //Create Test struct if there is a test body
    if let Some(test_body) = test_body {
        res.set_value(ast::Test { test_body, aborts });
    }

    res
}

/// Extract the abort name before running segments_from_tree()
fn abort_sequence_from_tree(file_id: usize, node: Pair<Rule>) -> CompilerResult<ast::Abort> {
    let mut res = CompilerResult::new("Create abort from statements");

    let mut pairs = node.into_inner();
    // Retrieve abort header and name
    let abort_header = pairs.next().unwrap();

    let abort_name = abort_header.as_str();

    // Pass abort without header to parse segments
    if let Some(abort_statements) = res.require(statements_from_tree(file_id, pairs)) {
        res.require(no_user_aborts(&abort_statements));
        // Set result value to new Abort struct
        res.set_value(ast::Abort {
            name: String::from(abort_name),
            statements: abort_statements,
        });
    }

    res
}
/// Ensure that the provided abort statements don't reference
/// user defined aborts as aborts may only abort to the HARD_ABORT
fn no_user_aborts(abort_statements: &[Statement]) -> CompilerResult<()> {
    let mut res = CompilerResult::status_only("Check abort only references HARD_ABORT.");

    for statement in abort_statements {
        if let ast::Statement::Sensor(sensor_statement) = statement {
            if sensor_statement.abort != ast::Abort::HARD_ABORT {
                res.error((
                    sensor_statement.metadata,
                    "Can't reference user defined abort within abort sequence!",
                ));
            }
        }
    }

    res
}

fn timing_from_tree(file_id: usize, timing_iter: Pair<Rule>) -> CompilerResult<u128> {
    let mut res = CompilerResult::new("Create timestamp");
    let metadata = Location::from_pest(file_id, timing_iter.as_span());
    let mut timing_iter = timing_iter.into_inner();
    let mut timing = ast::Timing {
        minutes: None,
        seconds: None,
        milliseconds: None,
    };

    // maximum of 3 time units
    let mut found_units = ["", "", ""];

    for i in 0..3 {
        if let Some(number) = timing_iter.next() {
            if let Some(unit_opt) = timing_iter.next() {
                let value = Some(number.as_str().parse().unwrap());
                let unit = unit_opt.as_str();
                if found_units.iter().position(|&u| u == unit).is_some() {
                    res.error((metadata, "Illegal timestamp. No duplicate units allowed."));
                    return res;
                }
                found_units[i] = unit;

                match unit {
                    "min" => timing.minutes = value,
                    "s" => timing.seconds = value,
                    "ms" => timing.milliseconds = value,
                    _ => {
                        res.error((metadata, "Unrecognized time unit"));
                        return res;
                    }
                }
            } else {
                // happens if there was no unit next to the number (grammar should prevent this)
                res.error((metadata, "Failed to parse timestamp"));
                return res;
            }
        } else {
            // have parsed everything, can exit the loop
            break;
        }
    }

    if timing.can_be_simplified() {
        res.warning((metadata, "Timestamp can be simplified"));
    }

    res.with_value(timing.to_ms())
}

/// Ignore the test header before running segments_from_tree()
fn test_body_from_tree(file_id: usize, node: Pair<Rule>) -> CompilerResult<ast::TestBody> {
    let mut res = CompilerResult::new("Create test body from statements");
    let pairs = node.into_inner();
    //Ignore the header
    //pass test without header to parse segments
    if let Some(statements) = res.require(statements_from_tree(file_id, pairs)) {
        res.set_value(ast::TestBody { statements });
    }

    res
}

/// Create a sequence of Segments from a parse tree node of type Rule::TEST_BODY or Rule::ABORT
fn statements_from_tree(
    file_id: usize,
    iterator: Pairs<Rule>,
) -> CompilerResult<Vec<ast::Statement>> {
    let mut res = CompilerResult::new("Parse test statements into vector of statements");

    res.set_value(Vec::new());
    res.collect(iterator.map(|node| statement_from_tree(file_id, node)));
    res
}

/// Create a segment from a parse tree of type Rule::RELAY_STATEMENT
fn statement_from_tree(file_id: usize, node: Pair<Rule>) -> CompilerResult<ast::Statement> {
    let mut res = CompilerResult::new("Parse test statement");

    //node is a single pair of type rule:STATEMENT
    //go into inner of node to get single pair of type rule:SENSOR_STATEMENT or rule:RELAY_STATEMENT
    let mut node_iter = node.into_inner();

    //Get the next and only pair of type rule:SENSOR_STATEMENT or rule:RELAY_STATEMENT
    let statement = node_iter.next().unwrap();

    //match the rule type of statement to parse a relay or sensor statement
    match statement.as_rule() {
        Rule::SECTION_STATEMENT => {
            if let Some(statement) = res.require(section_statement_from_tree(file_id, statement)) {
                res.set_value(ast::Statement::Section(statement));
            }
        }
        Rule::SENSOR_STATEMENT => {
            if let Some(statement) = res.require(sensor_statement_from_tree(file_id, statement)) {
                res.set_value(ast::Statement::Sensor(statement));
            }
        }
        Rule::RELAY_STATEMENT => {
            if let Some(statement) = res.require(relay_statement_from_tree(file_id, statement)) {
                res.set_value(ast::Statement::Relay(statement));
            }
        }
        _ => unreachable!(),
    }
    res
}

fn section_statement_from_tree(
    file_id: usize,
    section_statement: Pair<Rule>,
) -> CompilerResult<ast::SectionStatement> {
    let mut res = CompilerResult::new("Parse section statement");
    // Store metadata for error reporting
    let metadata = Location::from_pest(file_id, section_statement.as_span());
    let mut section_statement_pairs = section_statement.into_inner();

    let name = section_statement_pairs.next().unwrap();
    let timing = section_statement_pairs.next().unwrap();

    let time = res.require(section_timing_from_statement(file_id, timing));
    // Section statements are all remaining entries in section_statement_pairs iterator
    let statements = res.require(statements_from_tree(file_id, section_statement_pairs));

    // Return res without any value if there is a missing value
    if !(time.is_some() && statements.is_some()) {
        res.error((metadata, "Something went wrong! (TODO)"));
        return res;
    }
    let ast_section_statement = ast::SectionStatement {
        name: name.as_str().into(),
        time: time.unwrap(),
        statements: statements.unwrap(),
        metadata,
    };
    // Ensure all statements within this section
    // don't extend past the end of the section
    res.require(ast_section_statement.check_statements_within_bounds());
    res.with_value(ast_section_statement)
}

fn section_timing_from_statement(
    file_id: usize,
    section_timing: Pair<Rule>,
) -> CompilerResult<ast::SectionTime> {
    let mut res = CompilerResult::new("Parse section timing");

    let metadata = Location::from_pest(file_id, section_timing.as_span());
    let mut timing_iter = section_timing.into_inner();
    let start_opt;
    let duration_opt;

    if let Some(time) = res.require(timing_from_tree(file_id, timing_iter.next().unwrap())) {
        start_opt = time;
    } else {
        res.error((metadata, "Failed to parse section start time"));
        return res;
    }
    if let Some(time) = res.require(timing_from_tree(file_id, timing_iter.next().unwrap())) {
        duration_opt = time;
    } else {
        res.error((metadata, "Failed to parse section duration time"));
        return res;
    }
    let start = start_opt;
    let duration = duration_opt;
    res.with_value(ast::SectionTime { start, duration })
}

fn sensor_statement_from_tree(
    file_id: usize,
    sensor_statement: Pair<Rule>,
) -> CompilerResult<ast::SensorStatement> {
    let mut res = CompilerResult::new("Parse sensor statement");

    // Store metadata for error reporting
    let metadata = Location::from_pest(file_id, sensor_statement.as_span());

    let mut sensor_statement_pairs = sensor_statement.into_inner();

    let timing = sensor_statement_pairs.next().unwrap();
    let constraint_list = sensor_statement_pairs.next().unwrap();
    let abort_id = sensor_statement_pairs.next().unwrap();

    let abort_name = res
        .require(abort_name_from_statement(file_id, abort_id))
        .unwrap();
    let relative_time = res.require(sensor_timing_from_statement(file_id, timing));
    let sensor_constraints = res.require(sensor_constraint_list_from_statement(
        file_id,
        constraint_list,
        &abort_name,
    ));

    //Return res without any value if there is a missing value
    if !(relative_time.is_some() && sensor_constraints.is_some()) {
        return res;
    }
    let ast_sensor_statement = ast::SensorStatement {
        time: relative_time.unwrap(),
        constraints: sensor_constraints.unwrap(),
        abort: abort_name,
        metadata,
    };
    res.with_value(ast_sensor_statement)
}

fn abort_name_from_statement(_file_id: usize, abort_name: Pair<Rule>) -> CompilerResult<String> {
    let res = CompilerResult::new("Parse abort name");

    res.with_value(String::from(abort_name.as_str()))
}

fn sensor_timing_from_statement(
    file_id: usize,
    sensor_timing: Pair<Rule>,
) -> CompilerResult<ast::SensorTime> {
    let mut res = CompilerResult::new("Parse sensor timing");

    let mut timing_iter = sensor_timing.into_inner();
    let mut first = None;
    let mut second = None;

    if let Some(time) = res.require(timing_from_tree(file_id, timing_iter.next().unwrap())) {
        first = Some(time);
    }

    if let Some(end_iter) = timing_iter.next() {
        if let Some(time) = res.require(timing_from_tree(file_id, end_iter)) {
            second = Some(time);
        }
    }

    if let Some(first) = first {
        if let Some(second) = second {
            res.set_value(ast::SensorTime::Interval {
                start: first,
                end: second,
            });
        } else {
            res.set_value(ast::SensorTime::Instant { time: first });
        }
    }

    res
}

fn sensor_constraint_list_from_statement(
    file_id: usize,
    sensor_constraint_list: Pair<Rule>,
    abort_name: &str,
) -> CompilerResult<Vec<ast::SensorConstraint>> {
    let mut res = CompilerResult::new("Parse sensor constraint list");
    let constraint_list_iter = sensor_constraint_list.into_inner();

    res.set_value(Vec::new());
    res.collect(
        constraint_list_iter
            .map(|child| sensor_constraint_from_statement(file_id, child, abort_name)),
    );
    res
}

fn sensor_constraint_from_statement(
    file_id: usize,
    sensor_constraint: Pair<Rule>,
    abort_name: &str,
) -> CompilerResult<ast::SensorConstraint> {
    let mut res = CompilerResult::new("Parse sensor constraint");

    //Store metadata for error reporting
    let metadata = Location::from_pest(file_id, sensor_constraint.as_span());

    let mut constraint_iter = sensor_constraint.into_inner();

    let sensor_constraint_type = constraint_iter.next().unwrap();
    match sensor_constraint_type.as_rule() {
        Rule::SENSOR_CONSTRAINT_NUMERIC => {
            //Iterator over sensor constraint contents
            let mut inner_constraint_iter = sensor_constraint_type.into_inner();
            //Left constraint value
            let left_bound = inner_constraint_iter.next().unwrap();
            //ID of the sensor
            let sensor_id = inner_constraint_iter.next().unwrap().as_str();
            //Right constraint value
            let right_bound = inner_constraint_iter.next().unwrap();

            //Get ast::SensorBound for left and right constraints
            let sensor_bound = check!(
                res,
                numeric_bound_from_constraint(file_id, left_bound, right_bound)
            );

            //Return ast::SensorConstraint
            res.set_value(SensorConstraint {
                id: String::from(sensor_id),
                sensor_bound: SensorBound::Numeric(sensor_bound),
                abort: abort_name.to_string(),
                metadata,
            });
        }
        Rule::SENSOR_CONSTRAINT_BOOLEAN => {
            //Iterator over sensor constraint contents
            let mut inner_constraint_iter = sensor_constraint_type.into_inner();
            //ID of the sensor
            let sensor_id = inner_constraint_iter.next().unwrap().as_str();
            //Boolean constraint value
            let sensor_constraint_bool = inner_constraint_iter.next().unwrap().as_str();

            let bool_value = match sensor_constraint_bool {
                "true" => true,
                "false" => false,
                _ => unreachable!(),
            };

            //Return sensor constraint
            res.set_value(SensorConstraint {
                id: String::from(sensor_id),
                sensor_bound: SensorBound::Boolean(bool_value),
                abort: abort_name.to_string(),
                metadata,
            });
        }
        _ => unreachable!(),
    }

    res
}

fn numeric_bound_from_constraint(
    file_id: usize,
    left_bound: Pair<Rule>,
    right_bound: Pair<Rule>,
) -> CompilerResult<SensorBoundNumeric> {
    let mut res = CompilerResult::new("Parse sensor bound");

    //Store metadata for error reporting
    let left_metadata = Location::from_pest(file_id, left_bound.as_span());
    let right_metadata = Location::from_pest(file_id, right_bound.as_span());

    let mut left_iter = left_bound.into_inner();
    let mut right_iter = right_bound.into_inner();

    let left_value_str = left_iter.next().unwrap().as_str();
    let right_value_str = right_iter.next().unwrap().as_str();
    let left_value = check!(
        res,
        left_value_str.parse::<f64>(),
        (left_metadata, "Invalid sensor bound provided!")
    );
    let right_value = check!(
        res,
        right_value_str.parse::<f64>(),
        (right_metadata, "Invalid sensor bound provided!")
    );

    let left_unit = left_iter.next().unwrap().as_str();
    let right_unit = right_iter.next().unwrap().as_str();

    if left_unit != right_unit {
        res.error((left_metadata, "See next message"));
        res.error((
            right_metadata,
            "Type mismatch for left and right sensor bound",
        ));
    }

    res.with_value(SensorBoundNumeric {
        left: left_value,
        right: right_value,
        unit: String::from(left_unit),
    })
}

fn relay_statement_from_tree(
    file_id: usize,
    relay_statement: Pair<Rule>,
) -> CompilerResult<ast::RelayStatement> {
    let mut res = CompilerResult::new("Parse relay statement");

    //Store metadata for error reporting
    let metadata = Location::from_pest(file_id, relay_statement.as_span());

    let mut relay_statement = relay_statement.into_inner();
    let timing = relay_statement.next().unwrap();
    let relay_op_pair = relay_statement.next().unwrap();
    let relay_id = relay_statement.next().unwrap().as_str();

    let relay_op = relay_op_from_statement(file_id, relay_op_pair);
    let relative_time = res.require(relay_timing_from_statement(file_id, timing));

    let sensor_statement = ast::RelayStatement {
        time: relative_time.unwrap(),
        id: String::from(relay_id),
        op: res.require(relay_op).unwrap(),
        metadata,
    };
    res.with_value(sensor_statement)
}

fn relay_timing_from_statement(file_id: usize, relay_timing: Pair<Rule>) -> CompilerResult<u128> {
    let mut res = CompilerResult::new("Parse relay timing");

    //Store metadata for error reporting
    let metadata = Location::from_pest(file_id, relay_timing.as_span());

    let mut timing_iter = relay_timing.into_inner();

    if let Some(time) = res.require(timing_from_tree(file_id, timing_iter.next().unwrap())) {
        res.set_value(time);
    } else {
        res.error((metadata, "Failed to parse relay timing!"));
    }

    res
}

fn relay_op_from_statement(file_id: usize, relay_op: Pair<Rule>) -> CompilerResult<ast::RelayOp> {
    let mut res = CompilerResult::new("Parse relay op");

    //Store metadata for error reporting
    let metadata = Location::from_pest(file_id, relay_op.as_span());

    let op = relay_op.as_str();

    match op {
        "set" => {
            return res.with_value(ast::RelayOp::Set);
        }
        "unset" => {
            return res.with_value(ast::RelayOp::Unset);
        }
        _ => {
            res.error((metadata, "No valid relay op given"));
        }
    }
    res
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::pest::Parser;
    use ast::*;

    #[test]
    fn parse_timing_syntax() {
        fn parse_timing(timing: &str) -> Option<u128> {
            let timing_parsed = TDFParser::parse(Rule::TIMING, timing);
            let timing_final = timing_from_tree(0, timing_parsed.unwrap().peek().unwrap());
            timing_final.to_option()
        }

        let mut res = parse_timing("1min-30s-15ms");
        assert_eq!(Some(60000 * 1 + 30 * 1000 + 15), res);

        res = parse_timing("30s-15ms");
        assert_eq!(Some(30 * 1000 + 15), res);

        res = parse_timing("30min-15ms");
        assert_eq!(Some(30 * 60000 + 15), res);

        res = parse_timing("30min-15s");
        assert_eq!(Some(30 * 60000 + 15 * 1000), res);

        res = parse_timing("15min");
        assert_eq!(Some(15 * 60000), res);

        res = parse_timing("15s");
        assert_eq!(Some(15 * 1000), res);

        res = parse_timing("15ms");
        assert_eq!(Some(15), res);

        res = parse_timing("15ms-15ms-15ms");
        assert_eq!(None, res);

        res = parse_timing("15s-15s");
        assert_eq!(None, res);
    }

    #[test]
    fn parse_relay_statement() {
        let relay_test = "at 1ms set relay1";
        let relay_parsed = TDFParser::parse(Rule::RELAY_STATEMENT, relay_test);
        let relay_final = relay_statement_from_tree(0, relay_parsed.unwrap().peek().unwrap());
        let relay_expected = RelayStatement {
            time: 1,
            id: "relay1".to_string(),
            op: RelayOp::Set,
            metadata: Location::from_raw(0, 0, 17),
        };
        assert_eq!(Some(relay_expected), relay_final.to_option());
    }

    #[test]
    fn parse_sensor_statement() {
        let sensor_test = "at 100ms require { 10c < sensor1 < 20c } else pressure_lost";
        let sensor_parsed = TDFParser::parse(Rule::SENSOR_STATEMENT, sensor_test);
        let sensor_final = sensor_statement_from_tree(0, sensor_parsed.unwrap().peek().unwrap());
        let sensor_expected = SensorStatement {
            time: ast::SensorTime::Instant { time: 100 },
            constraints: vec![SensorConstraint {
                id: "sensor1".to_string(),
                sensor_bound: SensorBound::Numeric(SensorBoundNumeric {
                    left: 10.0,
                    right: 20.0,
                    unit: "c".to_string(),
                }),
                abort: "pressure_lost".to_string(),
                metadata: Location::from_raw(0, 19, 38),
            }],
            abort: "pressure_lost".to_string(),
            metadata: Location::from_raw(0, 0, 59),
        };
        assert_eq!(Some(sensor_expected), sensor_final.to_option());
    }

    #[test]
    fn parse_empty_tdf() {
        let create_test = "
        test {
            
        }
        "
        .to_string();
        let parsed_test = parse_tdf(0, create_test);
        let final_test = parsed_test.to_option();

        let check_test = ast::Test {
            test_body: TestBody { statements: vec![] },
            aborts: vec![],
        };
        assert_eq!(final_test, Some(check_test));
    }

    #[test]
    fn parse_commented_tdf() {
        let create_test = "
        test {
            #Hello World
            #}
            #at 1ms set relay1
            #at 100ms require { 10c < sensor1 < 20c } else pressure_lost

            #from 150ms to 200ms require {
                #20c < sensor1 < 30c,
                #sensor1 < 20c or sensor1 > 30c
            #} else pressure_lost
        }
        "
        .to_string();
        let parsed_test = parse_tdf(0, create_test);
        let final_test = parsed_test.to_option();

        let check_test = ast::Test {
            test_body: TestBody { statements: vec![] },
            aborts: vec![],
        };
        assert_eq!(final_test, Some(check_test));
    }

    #[test]
    fn parse_abort_tdf() {
        let create_abort = "abort pressure_lost 
        {
            from 150ms to 200ms require {
                20c < sensor1 < 30c
            } else HARD_ABORT
        }";

        let parsed_abort = TDFParser::parse(Rule::ABORT_SEQUENCE, create_abort);
        let final_abort = abort_sequence_from_tree(0, parsed_abort.unwrap().peek().unwrap());

        let sensor_contraint = vec![SensorConstraint {
            id: "sensor1".to_string(),
            sensor_bound: SensorBound::Numeric(SensorBoundNumeric {
                left: 20.0,
                right: 30.0,
                unit: "c".to_string(),
            }),
            abort: "HARD_ABORT".to_string(),
            metadata: Location::from_raw(0, 89, 108),
        }];
        let sensor_statements = vec![Statement::Sensor(SensorStatement {
            time: SensorTime::Interval {
                start: 150,
                end: 200,
            },
            constraints: sensor_contraint,
            abort: "HARD_ABORT".to_string(),
            metadata: Location::from_raw(0, 43, 138),
        })];

        let check_abort = ast::Abort {
            name: "pressure_lost".to_string(),
            statements: sensor_statements,
        };

        assert_eq!(final_abort.to_option(), Some(check_abort))
    }

    #[test]
    fn parse_section_tdf() {
        let create_test = "test {
            section new at 52ms for 50ms {
                at 5ms unset relay1
            }
        }"
        .to_string();

        let parsed_test = parse_tdf(0, create_test);
        let final_test = parsed_test.to_option();
        let relay_vec = Statement::Section(SectionStatement {
            name: String::from("new"),
            time: SectionTime {
                start: 52,
                duration: 50,
            },
            statements: vec![Statement::Relay(RelayStatement {
                time: 5,
                id: String::from("relay1"),
                op: RelayOp::Unset,
                metadata: Location::from_raw(0, 66, 85),
            })],
            metadata: Location::from_raw(0, 19, 99),
        });
        let check_test = ast::Test {
            test_body: TestBody {
                statements: vec![relay_vec],
            },
            aborts: vec![],
        };

        assert_eq!(final_test, Some(check_test));
    }
}