Files
aho_corasick
atty
beef
bitflags
bstr
byteorder
cfg_if
clap
clap_derive
codespan
codespan_reporting
crc_any
crypto_hash
csv
csv_core
debug_helper
filepath
fixed
fixed_macro
fixed_macro_impl
fixed_macro_types
fnv
foreign_types
foreign_types_shared
getrandom
glob
hashbrown
heck
hex
indexmap
itoa
lazy_static
libc
linked_hash_map
linked_hash_set
logos
logos_derive
lrl_test_compiler
maplit
memchr
memoffset
once_cell
openssl
openssl_sys
os_str_bytes
paste
pest
pest_derive
pest_generator
pest_meta
phf
phf_generator
phf_macros
phf_shared
ppv_lite86
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
quote
rand
rand_chacha
rand_core
regex
regex_automata
regex_syntax
remove_dir_all
ring
rowan
rustc_hash
ryu
semver
semver_parser
serde
serde_derive
serde_json
siphasher
smallvec
smawk
smol_str
spin
stable_deref_trait
strsim
syn
taplo
tempfile
termcolor
text_size
textwrap
toml
triomphe
typenum
ucd_trie
unicode_linebreak
unicode_segmentation
unicode_width
unicode_xid
untrusted
utf8_ranges
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright © 2018–2021 Trevor Spiteri

// This library is free software: you can redistribute it and/or
// modify it under the terms of either
//
//   * the Apache License, Version 2.0 or
//   * the MIT License
//
// at your option.
//
// You should have recieved copies of the Apache License and the MIT
// License along with the library. If not, see
// <https://www.apache.org/licenses/LICENSE-2.0> and
// <https://opensource.org/licenses/MIT>.

use crate::helpers::{FloatKind, IntHelper, ToFixedHelper, ToFloatHelper, Widest};
use core::cmp::Ordering;
#[cfg(feature = "f16")]
use half::{bf16, f16};

pub trait FloatHelper: Copy {
    type Bits: IntHelper;

    const PREC: u32;
    const EXP_BIAS: i32 = (1 << (Self::Bits::NBITS - Self::PREC - 1)) - 1;
    const EXP_MIN: i32 = 1 - Self::EXP_BIAS;
    const EXP_MAX: i32 = Self::EXP_BIAS;
    const SIGN_MASK: Self::Bits = Self::Bits::MSB;
    const EXP_MASK: Self::Bits;
    const MANT_MASK: Self::Bits;

    fn is_nan(self) -> bool;

    fn parts(self) -> (bool, i32, Self::Bits);

    fn from_to_float_helper(val: ToFloatHelper, frac_bits: u32, int_bits: u32) -> Self;
    fn to_float_kind(self, dst_frac_bits: u32, dst_int_bits: u32) -> FloatKind;
}

macro_rules! sealed_float {
    ($Float:ident($Bits:ty, $IBits:ty, $prec:expr)) => {
        impl FloatHelper for $Float {
            type Bits = $Bits;

            const PREC: u32 = $prec;
            const EXP_MASK: Self::Bits = !(Self::SIGN_MASK | Self::MANT_MASK);
            const MANT_MASK: Self::Bits = (1 << (Self::PREC - 1)) - 1;

            #[inline]
            fn is_nan(self) -> bool {
                (self.to_bits() & !Self::SIGN_MASK) > Self::EXP_MASK
            }

            #[inline]
            fn parts(self) -> (bool, i32, $Bits) {
                let bits = self.to_bits();
                let neg = bits & Self::SIGN_MASK != 0;
                let biased_exp = (bits & Self::EXP_MASK) >> (Self::PREC - 1);
                let exp = biased_exp as i32 - Self::EXP_BIAS;
                let mant = bits & Self::MANT_MASK;

                (neg, exp, mant)
            }

            #[inline]
            fn from_to_float_helper(val: ToFloatHelper, frac_bits: u32, int_bits: u32) -> $Float {
                let fix_bits = frac_bits + int_bits;

                let bits_sign = if val.neg { Self::SIGN_MASK } else { 0 };

                let extra_zeros = 128 - fix_bits;
                let leading_zeros = val.abs.leading_zeros() - extra_zeros;
                let signif_bits = fix_bits - leading_zeros;
                if signif_bits == 0 {
                    return Self::from_bits(bits_sign);
                }
                // remove leading zeros and implicit one
                let mut mantissa = val.abs << leading_zeros << 1;
                let exponent = int_bits as i32 - 1 - leading_zeros as i32;
                let biased_exponent = if exponent > Self::EXP_MAX {
                    return Self::from_bits(Self::EXP_MASK | bits_sign);
                } else if exponent < Self::EXP_MIN {
                    let lost_prec = Self::EXP_MIN - exponent;
                    if lost_prec as u32 >= (int_bits + frac_bits) {
                        mantissa = 0;
                    } else {
                        // reinsert implicit one
                        mantissa = (mantissa >> 1) | !(!0 >> 1);
                        mantissa >>= lost_prec - 1;
                    }
                    0
                } else {
                    (exponent + Self::EXP_MAX) as Self::Bits
                };
                // check for rounding
                let round_up = (fix_bits >= Self::PREC) && {
                    let shift = Self::PREC - 1;
                    let mid_bit = !(!0 >> 1) >> (shift + extra_zeros);
                    let lower_bits = mid_bit - 1;
                    if mantissa & mid_bit == 0 {
                        false
                    } else if mantissa & lower_bits != 0 {
                        true
                    } else {
                        // round to even
                        mantissa & (mid_bit << 1) != 0
                    }
                };
                let bits_exp = biased_exponent << (Self::PREC - 1);
                let bits_mantissa = (if fix_bits >= Self::PREC - 1 {
                    (mantissa >> (fix_bits - (Self::PREC - 1))) as Self::Bits
                } else {
                    (mantissa as Self::Bits) << (Self::PREC - 1 - fix_bits)
                }) & !(!0 << (Self::PREC - 1));
                let mut bits_exp_mantissa = bits_exp | bits_mantissa;
                if round_up {
                    bits_exp_mantissa += 1;
                }
                Self::from_bits(bits_sign | bits_exp_mantissa)
            }

            #[inline]
            fn to_float_kind(self, dst_frac_bits: u32, dst_int_bits: u32) -> FloatKind {
                let prec = Self::PREC as i32;

                let (neg, exp, mut mantissa) = self.parts();
                if exp > Self::EXP_MAX {
                    if mantissa == 0 {
                        return FloatKind::Infinite { neg };
                    } else {
                        return FloatKind::NaN;
                    };
                }
                // if not subnormal, add implicit bit
                if exp >= Self::EXP_MIN {
                    mantissa |= 1 << (prec - 1);
                }
                if mantissa == 0 {
                    let conv = ToFixedHelper {
                        bits: Widest::Unsigned(0),
                        dir: Ordering::Equal,
                        overflow: false,
                    };
                    return FloatKind::Finite { neg, conv };
                }

                let mut src_frac_bits = prec - 1 - exp;
                let need_to_shr = src_frac_bits - dst_frac_bits as i32;
                if need_to_shr > prec {
                    let dir = if neg {
                        Ordering::Greater
                    } else {
                        Ordering::Less
                    };
                    let conv = ToFixedHelper {
                        bits: Widest::Unsigned(0),
                        dir,
                        overflow: false,
                    };
                    return FloatKind::Finite { neg, conv };
                }
                let mut dir = Ordering::Equal;
                if need_to_shr > 0 {
                    let removed_bits = mantissa & !(!0 << need_to_shr);
                    let will_be_lsb = 1 << need_to_shr;
                    let tie = will_be_lsb >> 1;
                    if removed_bits == 0 {
                        // removed nothing
                    } else if removed_bits < tie {
                        dir = Ordering::Less;
                    } else if removed_bits > tie || mantissa & will_be_lsb != 0 {
                        mantissa += will_be_lsb;
                        dir = Ordering::Greater;
                    } else {
                        dir = Ordering::Less;
                    };
                    mantissa >>= need_to_shr;
                    src_frac_bits -= need_to_shr;
                }
                let mut mantissa = mantissa as $IBits;
                if neg {
                    mantissa = -mantissa;
                    dir = dir.reverse();
                }
                let mut conv = mantissa.to_fixed_helper(src_frac_bits, dst_frac_bits, dst_int_bits);
                conv.dir = dir;
                FloatKind::Finite { neg, conv }
            }
        }
    };
}

#[cfg(feature = "f16")]
sealed_float! { f16(u16, i16, 11) }
#[cfg(feature = "f16")]
sealed_float! { bf16(u16, i16, 8) }
sealed_float! { f32(u32, i32, 24) }
sealed_float! { f64(u64, i64, 53) }