[−][src]Struct unicode_segmentation::GraphemeCursor
Cursor-based segmenter for grapheme clusters.
Implementations
impl GraphemeCursor
[src]
pub fn new(offset: usize, len: usize, is_extended: bool) -> GraphemeCursor
[src]
Create a new cursor. The string and initial offset are given at creation
time, but the contents of the string are not. The is_extended
parameter
controls whether extended grapheme clusters are selected.
The offset
parameter must be on a codepoint boundary.
let s = "हिन्दी"; let mut legacy = GraphemeCursor::new(0, s.len(), false); assert_eq!(legacy.next_boundary(s, 0), Ok(Some("ह".len()))); let mut extended = GraphemeCursor::new(0, s.len(), true); assert_eq!(extended.next_boundary(s, 0), Ok(Some("हि".len())));
pub fn set_cursor(&mut self, offset: usize)
[src]
Set the cursor to a new location in the same string.
let s = "abcd"; let mut cursor = GraphemeCursor::new(0, s.len(), false); assert_eq!(cursor.cur_cursor(), 0); cursor.set_cursor(2); assert_eq!(cursor.cur_cursor(), 2);
pub fn cur_cursor(&self) -> usize
[src]
The current offset of the cursor. Equal to the last value provided to
new()
or set_cursor()
, or returned from next_boundary()
or
prev_boundary()
.
// Two flags (🇷🇸🇮🇴), each flag is two RIS codepoints, each RIS is 4 bytes. let flags = "\u{1F1F7}\u{1F1F8}\u{1F1EE}\u{1F1F4}"; let mut cursor = GraphemeCursor::new(4, flags.len(), false); assert_eq!(cursor.cur_cursor(), 4); assert_eq!(cursor.next_boundary(flags, 0), Ok(Some(8))); assert_eq!(cursor.cur_cursor(), 8);
pub fn provide_context(&mut self, chunk: &str, chunk_start: usize)
[src]
Provide additional pre-context when it is needed to decide a boundary.
The end of the chunk must coincide with the value given in the
GraphemeIncomplete::PreContext
request.
let flags = "\u{1F1F7}\u{1F1F8}\u{1F1EE}\u{1F1F4}"; let mut cursor = GraphemeCursor::new(8, flags.len(), false); // Not enough pre-context to decide if there's a boundary between the two flags. assert_eq!(cursor.is_boundary(&flags[8..], 8), Err(GraphemeIncomplete::PreContext(8))); // Provide one more Regional Indicator Symbol of pre-context cursor.provide_context(&flags[4..8], 4); // Still not enough context to decide. assert_eq!(cursor.is_boundary(&flags[8..], 8), Err(GraphemeIncomplete::PreContext(4))); // Provide additional requested context. cursor.provide_context(&flags[0..4], 0); // That's enough to decide (it always is when context goes to the start of the string) assert_eq!(cursor.is_boundary(&flags[8..], 8), Ok(true));
pub fn is_boundary(
&mut self,
chunk: &str,
chunk_start: usize
) -> Result<bool, GraphemeIncomplete>
[src]
&mut self,
chunk: &str,
chunk_start: usize
) -> Result<bool, GraphemeIncomplete>
Determine whether the current cursor location is a grapheme cluster boundary.
Only a part of the string need be supplied. If chunk_start
is nonzero or
the length of chunk
is not equal to len
on creation, then this method
may return GraphemeIncomplete::PreContext
. The caller should then
call provide_context
with the requested chunk, then retry calling this
method.
For partial chunks, if the cursor is not at the beginning or end of the string, the chunk should contain at least the codepoint following the cursor. If the string is nonempty, the chunk must be nonempty.
All calls should have consistent chunk contents (ie, if a chunk provides content for a given slice, all further chunks covering that slice must have the same content for it).
let flags = "\u{1F1F7}\u{1F1F8}\u{1F1EE}\u{1F1F4}"; let mut cursor = GraphemeCursor::new(8, flags.len(), false); assert_eq!(cursor.is_boundary(flags, 0), Ok(true)); cursor.set_cursor(12); assert_eq!(cursor.is_boundary(flags, 0), Ok(false));
pub fn next_boundary(
&mut self,
chunk: &str,
chunk_start: usize
) -> Result<Option<usize>, GraphemeIncomplete>
[src]
&mut self,
chunk: &str,
chunk_start: usize
) -> Result<Option<usize>, GraphemeIncomplete>
Find the next boundary after the current cursor position. Only a part of
the string need be supplied. If the chunk is incomplete, then this
method might return GraphemeIncomplete::PreContext
or
GraphemeIncomplete::NextChunk
. In the former case, the caller should
call provide_context
with the requested chunk, then retry. In the
latter case, the caller should provide the chunk following the one
given, then retry.
See is_boundary
for expectations on the provided chunk.
let flags = "\u{1F1F7}\u{1F1F8}\u{1F1EE}\u{1F1F4}"; let mut cursor = GraphemeCursor::new(4, flags.len(), false); assert_eq!(cursor.next_boundary(flags, 0), Ok(Some(8))); assert_eq!(cursor.next_boundary(flags, 0), Ok(Some(16))); assert_eq!(cursor.next_boundary(flags, 0), Ok(None));
And an example that uses partial strings:
let s = "abcd"; let mut cursor = GraphemeCursor::new(0, s.len(), false); assert_eq!(cursor.next_boundary(&s[..2], 0), Ok(Some(1))); assert_eq!(cursor.next_boundary(&s[..2], 0), Err(GraphemeIncomplete::NextChunk)); assert_eq!(cursor.next_boundary(&s[2..4], 2), Ok(Some(2))); assert_eq!(cursor.next_boundary(&s[2..4], 2), Ok(Some(3))); assert_eq!(cursor.next_boundary(&s[2..4], 2), Ok(Some(4))); assert_eq!(cursor.next_boundary(&s[2..4], 2), Ok(None));
pub fn prev_boundary(
&mut self,
chunk: &str,
chunk_start: usize
) -> Result<Option<usize>, GraphemeIncomplete>
[src]
&mut self,
chunk: &str,
chunk_start: usize
) -> Result<Option<usize>, GraphemeIncomplete>
Find the previous boundary after the current cursor position. Only a part
of the string need be supplied. If the chunk is incomplete, then this
method might return GraphemeIncomplete::PreContext
or
GraphemeIncomplete::PrevChunk
. In the former case, the caller should
call provide_context
with the requested chunk, then retry. In the
latter case, the caller should provide the chunk preceding the one
given, then retry.
See is_boundary
for expectations on the provided chunk.
let flags = "\u{1F1F7}\u{1F1F8}\u{1F1EE}\u{1F1F4}"; let mut cursor = GraphemeCursor::new(12, flags.len(), false); assert_eq!(cursor.prev_boundary(flags, 0), Ok(Some(8))); assert_eq!(cursor.prev_boundary(flags, 0), Ok(Some(0))); assert_eq!(cursor.prev_boundary(flags, 0), Ok(None));
And an example that uses partial strings (note the exact return is not
guaranteed, and may be PrevChunk
or PreContext
arbitrarily):
let s = "abcd"; let mut cursor = GraphemeCursor::new(4, s.len(), false); assert_eq!(cursor.prev_boundary(&s[2..4], 2), Ok(Some(3))); assert_eq!(cursor.prev_boundary(&s[2..4], 2), Err(GraphemeIncomplete::PrevChunk)); assert_eq!(cursor.prev_boundary(&s[0..2], 0), Ok(Some(2))); assert_eq!(cursor.prev_boundary(&s[0..2], 0), Ok(Some(1))); assert_eq!(cursor.prev_boundary(&s[0..2], 0), Ok(Some(0))); assert_eq!(cursor.prev_boundary(&s[0..2], 0), Ok(None));
Trait Implementations
impl Clone for GraphemeCursor
[src]
fn clone(&self) -> GraphemeCursor
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Auto Trait Implementations
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,