[−][src]Struct typenum::array::TArr
TArr
is a type that acts as an array of types. It is defined similarly to UInt
, only its
values can be more than bits, and it is designed to act as an array. So you can only add two if
they have the same number of elements, for example.
This array is only really designed to contain Integer
types. If you use it with others, you
may find it lacking functionality.
Trait Implementations
impl<Al, Vl, Ar, Vr> Add<TArr<Vr, Ar>> for TArr<Vl, Al> where
Al: Add<Ar>,
Vl: Add<Vr>,
[src]
Al: Add<Ar>,
Vl: Add<Vr>,
type Output = TArr<Sum<Vl, Vr>, Sum<Al, Ar>>
The resulting type after applying the +
operator.
fn add(self, rhs: TArr<Vr, Ar>) -> Self::Output
[src]
impl<V: Clone, A: Clone> Clone for TArr<V, A>
[src]
fn clone(&self) -> TArr<V, A>
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<V: Copy, A: Copy> Copy for TArr<V, A>
[src]
impl<V: Debug, A: Debug> Debug for TArr<V, A>
[src]
impl<V, A, Rhs> Div<Rhs> for TArr<V, A> where
V: Div<Rhs>,
A: Div<Rhs>,
Rhs: Copy,
[src]
V: Div<Rhs>,
A: Div<Rhs>,
Rhs: Copy,
type Output = TArr<Quot<V, Rhs>, Quot<A, Rhs>>
The resulting type after applying the /
operator.
fn div(self, rhs: Rhs) -> Self::Output
[src]
impl<V: Eq, A: Eq> Eq for TArr<V, A>
[src]
impl<V: Hash, A: Hash> Hash for TArr<V, A>
[src]
fn hash<__H: Hasher>(&self, state: &mut __H)
[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl<V, A> Len for TArr<V, A> where
A: Len,
Length<A>: Add<B1>,
Sum<Length<A>, B1>: Unsigned,
[src]
A: Len,
Length<A>: Add<B1>,
Sum<Length<A>, B1>: Unsigned,
Size of a TypeArray
type Output = Add1<Length<A>>
The length as a type-level unsigned integer.
fn len(&self) -> Self::Output
[src]
impl<V, A, Rhs> Mul<Rhs> for TArr<V, A> where
V: Mul<Rhs>,
A: Mul<Rhs>,
Rhs: Copy,
[src]
V: Mul<Rhs>,
A: Mul<Rhs>,
Rhs: Copy,
type Output = TArr<Prod<V, Rhs>, Prod<A, Rhs>>
The resulting type after applying the *
operator.
fn mul(self, rhs: Rhs) -> Self::Output
[src]
impl<V, A> Mul<TArr<V, A>> for Z0 where
Z0: Mul<A>,
[src]
Z0: Mul<A>,
type Output = TArr<Z0, Prod<Z0, A>>
The resulting type after applying the *
operator.
fn mul(self, rhs: TArr<V, A>) -> Self::Output
[src]
impl<V, A, U> Mul<TArr<V, A>> for PInt<U> where
U: Unsigned + NonZero,
PInt<U>: Mul<A> + Mul<V>,
[src]
U: Unsigned + NonZero,
PInt<U>: Mul<A> + Mul<V>,
type Output = TArr<Prod<PInt<U>, V>, Prod<PInt<U>, A>>
The resulting type after applying the *
operator.
fn mul(self, rhs: TArr<V, A>) -> Self::Output
[src]
impl<V, A, U> Mul<TArr<V, A>> for NInt<U> where
U: Unsigned + NonZero,
NInt<U>: Mul<A> + Mul<V>,
[src]
U: Unsigned + NonZero,
NInt<U>: Mul<A> + Mul<V>,
type Output = TArr<Prod<NInt<U>, V>, Prod<NInt<U>, A>>
The resulting type after applying the *
operator.
fn mul(self, rhs: TArr<V, A>) -> Self::Output
[src]
impl<V, A> Neg for TArr<V, A> where
V: Neg,
A: Neg,
[src]
V: Neg,
A: Neg,
type Output = TArr<Negate<V>, Negate<A>>
The resulting type after applying the -
operator.
fn neg(self) -> Self::Output
[src]
impl<V: Ord, A: Ord> Ord for TArr<V, A>
[src]
fn cmp(&self, other: &TArr<V, A>) -> Ordering
[src]
#[must_use]fn max(self, other: Self) -> Self
1.21.0[src]
#[must_use]fn min(self, other: Self) -> Self
1.21.0[src]
#[must_use]fn clamp(self, min: Self, max: Self) -> Self
[src]
impl<V, A, Rhs> PartialDiv<Rhs> for TArr<V, A> where
V: PartialDiv<Rhs>,
A: PartialDiv<Rhs>,
Rhs: Copy,
[src]
V: PartialDiv<Rhs>,
A: PartialDiv<Rhs>,
Rhs: Copy,
type Output = TArr<PartialQuot<V, Rhs>, PartialQuot<A, Rhs>>
The type of the result of the division
fn partial_div(self, rhs: Rhs) -> Self::Output
[src]
impl<V: PartialEq, A: PartialEq> PartialEq<TArr<V, A>> for TArr<V, A>
[src]
impl<V: PartialOrd, A: PartialOrd> PartialOrd<TArr<V, A>> for TArr<V, A>
[src]
fn partial_cmp(&self, other: &TArr<V, A>) -> Option<Ordering>
[src]
fn lt(&self, other: &TArr<V, A>) -> bool
[src]
fn le(&self, other: &TArr<V, A>) -> bool
[src]
fn gt(&self, other: &TArr<V, A>) -> bool
[src]
fn ge(&self, other: &TArr<V, A>) -> bool
[src]
impl<V, A, Rhs> Rem<Rhs> for TArr<V, A> where
V: Rem<Rhs>,
A: Rem<Rhs>,
Rhs: Copy,
[src]
V: Rem<Rhs>,
A: Rem<Rhs>,
Rhs: Copy,
type Output = TArr<Mod<V, Rhs>, Mod<A, Rhs>>
The resulting type after applying the %
operator.
fn rem(self, rhs: Rhs) -> Self::Output
[src]
impl<V, A> StructuralEq for TArr<V, A>
[src]
impl<V, A> StructuralPartialEq for TArr<V, A>
[src]
impl<Vl, Al, Vr, Ar> Sub<TArr<Vr, Ar>> for TArr<Vl, Al> where
Vl: Sub<Vr>,
Al: Sub<Ar>,
[src]
Vl: Sub<Vr>,
Al: Sub<Ar>,
type Output = TArr<Diff<Vl, Vr>, Diff<Al, Ar>>
The resulting type after applying the -
operator.
fn sub(self, rhs: TArr<Vr, Ar>) -> Self::Output
[src]
impl<V, A> TypeArray for TArr<V, A>
[src]
Auto Trait Implementations
impl<V, A> Send for TArr<V, A> where
A: Send,
V: Send,
A: Send,
V: Send,
impl<V, A> Sync for TArr<V, A> where
A: Sync,
V: Sync,
A: Sync,
V: Sync,
impl<V, A> Unpin for TArr<V, A> where
A: Unpin,
V: Unpin,
A: Unpin,
V: Unpin,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<M, N> PartialDiv<N> for M where
M: Integer + Div<N> + Rem<N, Output = Z0>,
[src]
M: Integer + Div<N> + Rem<N, Output = Z0>,
type Output = <M as Div<N>>::Output
The type of the result of the division
pub fn partial_div(Self, N) -> <M as PartialDiv<N>>::Output
[src]
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,