[−][src]Struct linked_hash_set::LinkedHashSet
A linked hash set implemented as a linked_hash_map::LinkedHashMap where the value is
(), in a similar way std HashSet is implemented from HashMap.
General usage is very similar to a std HashSet. However, a LinkedHashSet maintains
insertion order using a doubly-linked list running through its entries. As such methods
front(), pop_front(), back() and pop_back() are provided.
Examples
use linked_hash_set::LinkedHashSet; // Type inference lets us omit an explicit type signature (which // would be `LinkedHashSet<&str>` in this example). let mut books = LinkedHashSet::new(); // Add some books. books.insert("A Dance With Dragons"); books.insert("To Kill a Mockingbird"); books.insert("The Odyssey"); books.insert("The Great Gatsby"); // Check for a specific one. if !books.contains("The Winds of Winter") { println!( "We have {} books, but The Winds of Winter ain't one.", books.len() ); } // Remove a book. books.remove("The Odyssey"); // Remove the first inserted book. books.pop_front(); // Iterate over the remaining books in insertion order. for book in &books { println!("{}", book); } assert_eq!( books.into_iter().collect::<Vec<_>>(), vec!["To Kill a Mockingbird", "The Great Gatsby"] );
The easiest way to use LinkedHashSet with a custom type is to derive
Eq and Hash. We must also derive PartialEq, this will in the
future be implied by Eq.
use linked_hash_set::LinkedHashSet; #[derive(Hash, Eq, PartialEq, Debug)] struct Viking<'a> { name: &'a str, power: usize, } let mut vikings = LinkedHashSet::new(); vikings.insert(Viking { name: "Einar", power: 9, }); vikings.insert(Viking { name: "Einar", power: 9, }); vikings.insert(Viking { name: "Olaf", power: 4, }); vikings.insert(Viking { name: "Harald", power: 8, }); // Use derived implementation to print the vikings. for x in &vikings { println!("{:?}", x); }
A LinkedHashSet with fixed list of elements can be initialized from an array:
use linked_hash_set::LinkedHashSet; fn main() { let viking_names: LinkedHashSet<&str> = ["Einar", "Olaf", "Harald"].iter().cloned().collect(); // use the values stored in the set }
Implementations
impl<T: Hash + Eq> LinkedHashSet<T, RandomState>[src]
pub fn new() -> LinkedHashSet<T, RandomState>[src]
Creates an empty LinkedHashSet.
Examples
use linked_hash_set::LinkedHashSet; let set: LinkedHashSet<i32> = LinkedHashSet::new();
pub fn with_capacity(capacity: usize) -> LinkedHashSet<T, RandomState>[src]
Creates an empty LinkedHashSet with the specified capacity.
The hash set will be able to hold at least capacity elements without
reallocating. If capacity is 0, the hash set will not allocate.
Examples
use linked_hash_set::LinkedHashSet; let set: LinkedHashSet<i32> = LinkedHashSet::with_capacity(10); assert!(set.capacity() >= 10);
impl<T, S> LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher, [src]
T: Eq + Hash,
S: BuildHasher,
pub fn with_hasher(hasher: S) -> LinkedHashSet<T, S>[src]
Creates a new empty hash set which will use the given hasher to hash keys.
The hash set is also created with the default initial capacity.
Warning: hasher is normally randomly generated, and
is designed to allow LinkedHashSets to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
Examples
use linked_hash_set::LinkedHashSet; use std::collections::hash_map::RandomState; let s = RandomState::new(); let mut set = LinkedHashSet::with_hasher(s); set.insert(2);
pub fn with_capacity_and_hasher(
capacity: usize,
hasher: S
) -> LinkedHashSet<T, S>[src]
capacity: usize,
hasher: S
) -> LinkedHashSet<T, S>
Creates an empty LinkedHashSet with with the specified capacity, using
hasher to hash the keys.
The hash set will be able to hold at least capacity elements without
reallocating. If capacity is 0, the hash set will not allocate.
Warning: hasher is normally randomly generated, and
is designed to allow LinkedHashSets to be resistant to attacks that
cause many collisions and very poor performance. Setting it
manually using this function can expose a DoS attack vector.
Examples
use linked_hash_set::LinkedHashSet; use std::collections::hash_map::RandomState; let s = RandomState::new(); let mut set = LinkedHashSet::with_capacity_and_hasher(10, s); set.insert(1);
pub fn hasher(&self) -> &S[src]
Returns a reference to the set's BuildHasher.
Examples
use linked_hash_set::LinkedHashSet; use std::collections::hash_map::RandomState; let hasher = RandomState::new(); let set: LinkedHashSet<i32> = LinkedHashSet::with_hasher(hasher); let hasher: &RandomState = set.hasher();
pub fn capacity(&self) -> usize[src]
Returns the number of elements the set can hold without reallocating.
Examples
use linked_hash_set::LinkedHashSet; let set: LinkedHashSet<i32> = LinkedHashSet::with_capacity(100); assert!(set.capacity() >= 100);
pub fn reserve(&mut self, additional: usize)[src]
Reserves capacity for at least additional more elements to be inserted
in the LinkedHashSet. The collection may reserve more space to avoid
frequent reallocations.
Panics
Panics if the new allocation size overflows usize.
Examples
use linked_hash_set::LinkedHashSet; let mut set: LinkedHashSet<i32> = LinkedHashSet::new(); set.reserve(10); assert!(set.capacity() >= 10);
pub fn shrink_to_fit(&mut self)[src]
Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Examples
use linked_hash_set::LinkedHashSet; let mut set = LinkedHashSet::with_capacity(100); set.insert(1); set.insert(2); assert!(set.capacity() >= 100); set.shrink_to_fit(); assert!(set.capacity() >= 2);
pub fn iter(&self) -> Iter<'_, T>ⓘ[src]
An iterator visiting all elements in insertion order.
The iterator element type is &'a T.
Examples
use linked_hash_set::LinkedHashSet; let mut set = LinkedHashSet::new(); set.insert("a"); set.insert("b"); // Will print in an insertion order. for x in set.iter() { println!("{}", x); }
pub fn difference<'a>(
&'a self,
other: &'a LinkedHashSet<T, S>
) -> Difference<'a, T, S>ⓘNotable traits for Difference<'a, T, S>
impl<'a, T, S> Iterator for Difference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;[src]
&'a self,
other: &'a LinkedHashSet<T, S>
) -> Difference<'a, T, S>ⓘ
Notable traits for Difference<'a, T, S>
impl<'a, T, S> Iterator for Difference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;Visits the values representing the difference,
i.e. the values that are in self but not in other.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect(); let b: LinkedHashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); // Can be seen as `a - b`. for x in a.difference(&b) { println!("{}", x); // Print 1 } let diff: LinkedHashSet<_> = a.difference(&b).collect(); assert_eq!(diff, [1].iter().collect()); // Note that difference is not symmetric, // and `b - a` means something else: let diff: LinkedHashSet<_> = b.difference(&a).collect(); assert_eq!(diff, [4].iter().collect());
pub fn symmetric_difference<'a>(
&'a self,
other: &'a LinkedHashSet<T, S>
) -> SymmetricDifference<'a, T, S>ⓘNotable traits for SymmetricDifference<'a, T, S>
impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;[src]
&'a self,
other: &'a LinkedHashSet<T, S>
) -> SymmetricDifference<'a, T, S>ⓘ
Notable traits for SymmetricDifference<'a, T, S>
impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;Visits the values representing the symmetric difference,
i.e. the values that are in self or in other but not in both.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect(); let b: LinkedHashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); // Print 1, 4 in insertion order. for x in a.symmetric_difference(&b) { println!("{}", x); } let diff1: LinkedHashSet<_> = a.symmetric_difference(&b).collect(); let diff2: LinkedHashSet<_> = b.symmetric_difference(&a).collect(); assert_eq!(diff1, diff2); assert_eq!(diff1, [1, 4].iter().collect());
pub fn intersection<'a>(
&'a self,
other: &'a LinkedHashSet<T, S>
) -> Intersection<'a, T, S>ⓘNotable traits for Intersection<'a, T, S>
impl<'a, T, S> Iterator for Intersection<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;[src]
&'a self,
other: &'a LinkedHashSet<T, S>
) -> Intersection<'a, T, S>ⓘ
Notable traits for Intersection<'a, T, S>
impl<'a, T, S> Iterator for Intersection<'a, T, S> where
T: Eq + Hash,
S: BuildHasher, type Item = &'a T;Visits the values representing the intersection,
i.e. the values that are both in self and other.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect(); let b: LinkedHashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); // Print 2, 3 in insertion order. for x in a.intersection(&b) { println!("{}", x); } let intersection: LinkedHashSet<_> = a.intersection(&b).collect(); assert_eq!(intersection, [2, 3].iter().collect());
pub fn union<'a>(&'a self, other: &'a LinkedHashSet<T, S>) -> Union<'a, T, S>ⓘ[src]
Visits the values representing the union,
i.e. all the values in self or other, without duplicates.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect(); let b: LinkedHashSet<_> = [4, 2, 3, 4].iter().cloned().collect(); // Print 1, 2, 3, 4 in insertion order. for x in a.union(&b) { println!("{}", x); } let union: LinkedHashSet<_> = a.union(&b).collect(); assert_eq!(union, [1, 2, 3, 4].iter().collect());
pub fn len(&self) -> usize[src]
Returns the number of elements in the set.
Examples
use linked_hash_set::LinkedHashSet; let mut v = LinkedHashSet::new(); assert_eq!(v.len(), 0); v.insert(1); assert_eq!(v.len(), 1);
pub fn is_empty(&self) -> bool[src]
Returns true if the set contains no elements.
Examples
use linked_hash_set::LinkedHashSet; let mut v = LinkedHashSet::new(); assert!(v.is_empty()); v.insert(1); assert!(!v.is_empty());
pub fn clear(&mut self)[src]
Clears the set, removing all values.
Examples
use linked_hash_set::LinkedHashSet; let mut v = LinkedHashSet::new(); v.insert(1); v.clear(); assert!(v.is_empty());
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Hash + Eq, [src]
T: Borrow<Q>,
Q: Hash + Eq,
Returns true if the set contains a value.
The value may be any borrowed form of the set's value type, but
Hash and Eq on the borrowed form must match those for
the value type.
Examples
use linked_hash_set::LinkedHashSet; let set: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect(); assert_eq!(set.contains(&1), true); assert_eq!(set.contains(&4), false);
pub fn refresh<Q: ?Sized>(&mut self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Hash + Eq, [src]
T: Borrow<Q>,
Q: Hash + Eq,
If already present, moves a value to the end of the ordering.
If the set did have this value present, true is returned.
If the set did not have this value present, false is returned.
Similar to LinkedHashMap::get_refresh.
Examples
use linked_hash_set::LinkedHashSet; let mut set: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect(); let was_refreshed = set.refresh(&2); assert_eq!(was_refreshed, true); assert_eq!(set.into_iter().collect::<Vec<_>>(), vec![1, 3, 2]);
pub fn is_disjoint(&self, other: &LinkedHashSet<T, S>) -> bool[src]
Returns true if self has no elements in common with other.
This is equivalent to checking for an empty intersection.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect(); let mut b = LinkedHashSet::new(); assert_eq!(a.is_disjoint(&b), true); b.insert(4); assert_eq!(a.is_disjoint(&b), true); b.insert(1); assert_eq!(a.is_disjoint(&b), false);
pub fn is_subset(&self, other: &LinkedHashSet<T, S>) -> bool[src]
Returns true if the set is a subset of another,
i.e. other contains at least all the values in self.
Examples
use linked_hash_set::LinkedHashSet; let sup: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect(); let mut set = LinkedHashSet::new(); assert_eq!(set.is_subset(&sup), true); set.insert(2); assert_eq!(set.is_subset(&sup), true); set.insert(4); assert_eq!(set.is_subset(&sup), false);
pub fn is_superset(&self, other: &LinkedHashSet<T, S>) -> bool[src]
Returns true if the set is a superset of another,
i.e. self contains at least all the values in other.
Examples
use linked_hash_set::LinkedHashSet; let sub: LinkedHashSet<_> = [1, 2].iter().cloned().collect(); let mut set = LinkedHashSet::new(); assert_eq!(set.is_superset(&sub), false); set.insert(0); set.insert(1); assert_eq!(set.is_superset(&sub), false); set.insert(2); assert_eq!(set.is_superset(&sub), true);
pub fn insert(&mut self, value: T) -> bool[src]
Adds a value to the set.
If the set did not have this value present, true is returned.
If the set did have this value present, false is returned.
Note that performing this action will always place the value at the end of the ordering
whether the set already contained the value or not. Also see
insert_if_absent.
Examples
use linked_hash_set::LinkedHashSet; let mut set = LinkedHashSet::new(); assert_eq!(set.insert(2), true); assert_eq!(set.insert(2), false); assert_eq!(set.len(), 1);
pub fn insert_if_absent(&mut self, value: T) -> bool[src]
Adds a value to the set, if not already present. The distinction with insert is that
order of elements is unaffected when calling this method for a value already contained.
If the set did not have this value present, true is returned.
If the set did have this value present, false is returned.
Examples
use linked_hash_set::LinkedHashSet; let mut set = LinkedHashSet::new(); assert_eq!(set.insert_if_absent(2), true); assert_eq!(set.insert_if_absent(2), false); assert_eq!(set.len(), 1);
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Hash + Eq, [src]
T: Borrow<Q>,
Q: Hash + Eq,
Removes a value from the set. Returns true if the value was
present in the set.
The value may be any borrowed form of the set's value type, but
Hash and Eq on the borrowed form must match those for
the value type.
This operation will not affect the ordering of the other elements.
Examples
use linked_hash_set::LinkedHashSet; let mut set = LinkedHashSet::new(); set.insert(2); assert_eq!(set.remove(&2), true); assert_eq!(set.remove(&2), false);
pub fn front(&self) -> Option<&T>[src]
Gets the first entry.
pub fn pop_front(&mut self) -> Option<T>[src]
Removes the first entry.
pub fn back(&mut self) -> Option<&T>[src]
Gets the last entry.
pub fn pop_back(&mut self) -> Option<T>[src]
Removes the last entry.
Trait Implementations
impl<'a, 'b, T, S> BitAnd<&'b LinkedHashSet<T, S>> for &'a LinkedHashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default, [src]
T: Eq + Hash + Clone,
S: BuildHasher + Default,
type Output = LinkedHashSet<T, S>
The resulting type after applying the & operator.
fn bitand(self, rhs: &LinkedHashSet<T, S>) -> LinkedHashSet<T, S>[src]
Returns the intersection of self and rhs as a new LinkedHashSet<T, S>.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = vec![1, 2, 3].into_iter().collect(); let b: LinkedHashSet<_> = vec![2, 3, 4].into_iter().collect(); let set = &a & &b; let mut i = 0; let expected = [2, 3]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
impl<'a, 'b, T, S> BitOr<&'b LinkedHashSet<T, S>> for &'a LinkedHashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default, [src]
T: Eq + Hash + Clone,
S: BuildHasher + Default,
type Output = LinkedHashSet<T, S>
The resulting type after applying the | operator.
fn bitor(self, rhs: &LinkedHashSet<T, S>) -> LinkedHashSet<T, S>[src]
Returns the union of self and rhs as a new LinkedHashSet<T, S>.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = vec![1, 2, 3].into_iter().collect(); let b: LinkedHashSet<_> = vec![3, 4, 5].into_iter().collect(); let set = &a | &b; let mut i = 0; let expected = [1, 2, 3, 4, 5]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
impl<'a, 'b, T, S> BitXor<&'b LinkedHashSet<T, S>> for &'a LinkedHashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default, [src]
T: Eq + Hash + Clone,
S: BuildHasher + Default,
type Output = LinkedHashSet<T, S>
The resulting type after applying the ^ operator.
fn bitxor(self, rhs: &LinkedHashSet<T, S>) -> LinkedHashSet<T, S>[src]
Returns the symmetric difference of self and rhs as a new LinkedHashSet<T, S>.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = vec![1, 2, 3].into_iter().collect(); let b: LinkedHashSet<_> = vec![3, 4, 5].into_iter().collect(); let set = &a ^ &b; let mut i = 0; let expected = [1, 2, 4, 5]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
impl<T: Hash + Eq + Clone, S: BuildHasher + Clone> Clone for LinkedHashSet<T, S>[src]
fn clone(&self) -> Self[src]
fn clone_from(&mut self, source: &Self)1.0.0[src]
impl<T, S> Debug for LinkedHashSet<T, S> where
T: Eq + Hash + Debug,
S: BuildHasher, [src]
T: Eq + Hash + Debug,
S: BuildHasher,
impl<T, S> Default for LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher + Default, [src]
T: Eq + Hash,
S: BuildHasher + Default,
fn default() -> LinkedHashSet<T, S>[src]
Creates an empty LinkedHashSet<T, S> with the Default value for the hasher.
impl<T, S> Eq for LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher, [src]
T: Eq + Hash,
S: BuildHasher,
impl<'a, T, S> Extend<&'a T> for LinkedHashSet<T, S> where
T: 'a + Eq + Hash + Copy,
S: BuildHasher, [src]
T: 'a + Eq + Hash + Copy,
S: BuildHasher,
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)[src]
fn extend_one(&mut self, item: A)[src]
fn extend_reserve(&mut self, additional: usize)[src]
impl<T, S> Extend<T> for LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher, [src]
T: Eq + Hash,
S: BuildHasher,
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)[src]
fn extend_one(&mut self, item: A)[src]
fn extend_reserve(&mut self, additional: usize)[src]
impl<T, S> FromIterator<T> for LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher + Default, [src]
T: Eq + Hash,
S: BuildHasher + Default,
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> LinkedHashSet<T, S>[src]
impl<T, S> Hash for LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher, [src]
T: Eq + Hash,
S: BuildHasher,
fn hash<H: Hasher>(&self, state: &mut H)[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
H: Hasher,
impl<'a, T, S> IntoIterator for &'a LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher, [src]
T: Eq + Hash,
S: BuildHasher,
type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Iter<'a, T>ⓘ[src]
impl<T, S> IntoIterator for LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher, [src]
T: Eq + Hash,
S: BuildHasher,
type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> IntoIter<T>ⓘ[src]
Creates a consuming iterator, that is, one that moves each value out of the set in insertion order. The set cannot be used after calling this.
Examples
use linked_hash_set::LinkedHashSet; let mut set = LinkedHashSet::new(); set.insert("a".to_string()); set.insert("b".to_string()); // Not possible to collect to a Vec<String> with a regular `.iter()`. let v: Vec<String> = set.into_iter().collect(); // Will print in an insertion order. for x in &v { println!("{}", x); }
impl<T, S> PartialEq<LinkedHashSet<T, S>> for LinkedHashSet<T, S> where
T: Eq + Hash,
S: BuildHasher, [src]
T: Eq + Hash,
S: BuildHasher,
fn eq(&self, other: &LinkedHashSet<T, S>) -> bool[src]
#[must_use]fn ne(&self, other: &Rhs) -> bool1.0.0[src]
impl<'a, 'b, T, S> Sub<&'b LinkedHashSet<T, S>> for &'a LinkedHashSet<T, S> where
T: Eq + Hash + Clone,
S: BuildHasher + Default, [src]
T: Eq + Hash + Clone,
S: BuildHasher + Default,
type Output = LinkedHashSet<T, S>
The resulting type after applying the - operator.
fn sub(self, rhs: &LinkedHashSet<T, S>) -> LinkedHashSet<T, S>[src]
Returns the difference of self and rhs as a new LinkedHashSet<T, S>.
Examples
use linked_hash_set::LinkedHashSet; let a: LinkedHashSet<_> = vec![1, 2, 3].into_iter().collect(); let b: LinkedHashSet<_> = vec![3, 4, 5].into_iter().collect(); let set = &a - &b; let mut i = 0; let expected = [1, 2]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
Auto Trait Implementations
impl<T, S> RefUnwindSafe for LinkedHashSet<T, S> where
S: RefUnwindSafe,
T: RefUnwindSafe,
S: RefUnwindSafe,
T: RefUnwindSafe,
impl<T, S> Send for LinkedHashSet<T, S> where
S: Send,
T: Send,
S: Send,
T: Send,
impl<T, S> Sync for LinkedHashSet<T, S> where
S: Sync,
T: Sync,
S: Sync,
T: Sync,
impl<T, S> Unpin for LinkedHashSet<T, S> where
S: Unpin,
S: Unpin,
impl<T, S> UnwindSafe for LinkedHashSet<T, S> where
S: UnwindSafe,
T: RefUnwindSafe,
S: UnwindSafe,
T: RefUnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<I> IntoIterator for I where
I: Iterator, [src]
I: Iterator,
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
pub fn into_iter(self) -> I[src]
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T[src]
pub fn clone_into(&self, target: &mut T)[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,