[][src]Module fixed::consts

Mathematical constants.

The constants have the maximum precision possible for a fixed-point number, and are rounded down at that precision.

Examples

use fixed::{consts, types::I4F28};
let tau = I4F28::from_num(consts::TAU);
println!("τ = 2π with eight binary places is {:.8b}", tau);
assert_eq!(format!("{:.8b}", tau), "110.01001000");
println!("τ = 2π with eight decimal places is {:.8}", tau);
assert_eq!(format!("{:.8}", tau), "6.28318531");

Constants

E

Euler’s number, e = 2.71828…

FRAC_1_PHI

The golden ratio conjugate, Φ = 1/φ = 0.618033…

FRAC_1_PI

1/π = 0.318309…

FRAC_1_SQRT_2

1/√2 = 0.707106…

FRAC_1_TAU

1/τ = 0.159154…

FRAC_2_PI

2/π = 0.636619…

FRAC_2_SQRT_PI

2/√π = 1.12837…

FRAC_2_TAU

2/τ = 0.318309…

FRAC_4_TAU

4/τ = 0.636619…

FRAC_PI_2

π/2 = 1.57079…

FRAC_PI_3

π/3 = 1.04719…

FRAC_PI_4

π/4 = 0.785398…

FRAC_PI_6

π/6 = 0.523598…

FRAC_PI_8

π/8 = 0.392699…

FRAC_TAU_2

τ/2 = 3.14159…

FRAC_TAU_3

τ/3 = 2.09439…

FRAC_TAU_4

τ/4 = 1.57079…

FRAC_TAU_6

τ/6 = 1.04719…

FRAC_TAU_8

τ/8 = 0.785398…

FRAC_TAU_12

τ/12 = 0.523598…

LN_2

ln 2 = 0.693147…

LN_10

ln 10 = 2.30258…

LOG2_10

log2 10 = 3.32192…

LOG2_E

log2 e = 1.44269…

LOG10_2

log10 2 = 0.301029…

LOG10_E

log10 e = 0.434294…

PHI

The golden ratio, φ = 1.61803…

PI

Archimedes’ constant, π = 3.14159…

SQRT_2

√2 = 1.41421…

TAU

A turn, τ = 6.28318…