[−][src]Module fixed::consts
Mathematical constants.
The constants have the maximum precision possible for a fixed-point number, and are rounded down at that precision.
Examples
use fixed::{consts, types::I4F28}; let tau = I4F28::from_num(consts::TAU); println!("τ = 2π with eight binary places is {:.8b}", tau); assert_eq!(format!("{:.8b}", tau), "110.01001000"); println!("τ = 2π with eight decimal places is {:.8}", tau); assert_eq!(format!("{:.8}", tau), "6.28318531");
Constants
E | Euler’s number, e = 2.71828… |
FRAC_1_PHI | The golden ratio conjugate, Φ = 1/φ = 0.618033… |
FRAC_1_PI | 1/π = 0.318309… |
FRAC_1_SQRT_2 | 1/√2 = 0.707106… |
FRAC_1_TAU | 1/τ = 0.159154… |
FRAC_2_PI | 2/π = 0.636619… |
FRAC_2_SQRT_PI | 2/√π = 1.12837… |
FRAC_2_TAU | 2/τ = 0.318309… |
FRAC_4_TAU | 4/τ = 0.636619… |
FRAC_PI_2 | π/2 = 1.57079… |
FRAC_PI_3 | π/3 = 1.04719… |
FRAC_PI_4 | π/4 = 0.785398… |
FRAC_PI_6 | π/6 = 0.523598… |
FRAC_PI_8 | π/8 = 0.392699… |
FRAC_TAU_2 | τ/2 = 3.14159… |
FRAC_TAU_3 | τ/3 = 2.09439… |
FRAC_TAU_4 | τ/4 = 1.57079… |
FRAC_TAU_6 | τ/6 = 1.04719… |
FRAC_TAU_8 | τ/8 = 0.785398… |
FRAC_TAU_12 | τ/12 = 0.523598… |
LN_2 | ln 2 = 0.693147… |
LN_10 | ln 10 = 2.30258… |
LOG2_10 | log2 10 = 3.32192… |
LOG2_E | log2 e = 1.44269… |
LOG10_2 | log10 2 = 0.301029… |
LOG10_E | log10 e = 0.434294… |
PHI | The golden ratio, φ = 1.61803… |
PI | Archimedes’ constant, π = 3.14159… |
SQRT_2 | √2 = 1.41421… |
TAU | A turn, τ = 6.28318… |